
Automated Driving Toolbox™
User’s Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Automated Driving Toolbox™ User’s Guide
© COPYRIGHT 2017–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2017 Online only New for Version 1.0 (Release 2017a)
September 2017 Online only Revised for Version 1.1 (Release 2017b)
March 2018 Online only Revised for Version 1.2 (Release 2018a)
September 2018 Online only Revised for Version 1.3 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Sensor Configuration and Coordinate System
Transformations

1
Coordinate Systems in Automated Driving Toolbox 1-2

World Coordinate System . 1-2
Vehicle Coordinate System . 1-2
Sensor Coordinate System . 1-4
Spatial Coordinate System . 1-7

Calibrate a Monocular Camera . 1-8
Estimate Intrinsic Parameters . 1-8
Place Checkerboard for Extrinsic Parameter Estimation 1-8
Estimate Extrinsic Parameters . 1-11
Configure Camera Using Intrinsic and Extrinsic Parameters

. 1-12

Ground Truth Labeling and Verification
2

Get Started with the Ground Truth Labeler 2-2
Load Unlabeled Data . 2-2
Set Time Interval to Label . 2-3
Create Label Definitions . 2-4
Label Ground Truth . 2-14
Export Labeled Ground Truth . 2-18
Save App Session . 2-22

Keyboard Shortcuts and Mouse Actions for Ground Truth
Labeler . 2-24

Label Definitions . 2-24
Frame Navigation and Time Interval Settings 2-24

iii

Contents

Labeling Window . 2-25
Polyline Drawing . 2-25
Polygon Drawing . 2-26
Zooming . 2-27
App Sessions . 2-27

Tracking and Sensor Fusion
3

Visualize Sensor Data and Tracks in Bird's-Eye Scope 3-2
Open Model and Scope . 3-2
Find Signals . 3-3
Run Simulation . 3-6
Organize Signal Groups (Optional) . 3-8
Update Model and Rerun Simulation 3-8
Save and Close Model . 3-8

Linear Kalman Filters . 3-11
State Equations . 3-11
Measurement Models . 3-13
Linear Kalman Filter Equations . 3-13
Filter Loop . 3-14
Constant Velocity Model . 3-15
Constant Acceleration Model . 3-16

Extended Kalman Filters . 3-18
State Update Model . 3-18
Measurement Model . 3-19
Extended Kalman Filter Loop . 3-19
Predefined Extended Kalman Filter Functions 3-20

Driving Scenario Generation and Sensor Models
4

Build a Driving Scenario and Generate Synthetic Detections
. 4-2

Create a New Driving Scenario . 4-2

iv Contents

Add a Road . 4-2
Add Lanes . 4-6
Add Vehicles . 4-8
Add a Pedestrian . 4-10
Add Sensors . 4-12
Generate Sensor Detections . 4-15
Save Scenario . 4-17

Generate Synthetic Detections from a Prebuilt Driving
Scenario . 4-18

Choose a Prebuilt Scenario . 4-18
Modify Scenario . 4-37
Generate Synthetic Detections . 4-38
Save Scenario . 4-39

Generate Synthetic Detections from a Euro NCAP Scenario
. 4-40

Choose a Euro NCAP Scenario . 4-40
Modify Scenario . 4-56
Generate Synthetic Detections . 4-57
Save Scenario . 4-58

Add OpenDRIVE Roads to Driving Scenario 4-60
Import OpenDRIVE File . 4-60
Inspect Roads . 4-61
Add Actors and Sensors to Scenario 4-67
Generate Synthetic Detections . 4-68
Save Scenario . 4-69

Test Open-Loop ADAS Algorithm Using Driving Scenario . . . 4-72

Test Closed-Loop ADAS Algorithm Using Driving Scenario . . 4-78

Planning, Mapping, and Control
5

Access HERE HD Live Map Data . 5-2
Step 1: Enter Credentials . 5-2
Step 2: Create Reader Configuration 5-3
Step 3: Create Reader . 5-4

v

Step 4: Read and Visualize Data . 5-5

Enter HERE HD Live Map Credentials . 5-9

Create Configuration for HERE HD Live Map Reader 5-11
Create Configuration for Specific Catalog 5-12
Create Configuration for Specific Version 5-15
Configure Reader . 5-15

Create HERE HD Live Map Reader . 5-17
Create Reader from Specified Driving Route 5-17
Create Reader from Specified Map Tile IDs 5-20

Read and Visualize Data Using HERE HD Live Map Reader . 5-21
Create Reader . 5-22
Read Map Layer Data . 5-24
Visualize Map Layer Data . 5-30

HERE HD Live Map Layers . 5-34
Road Centerline Model . 5-35
HD Lane Model . 5-37
HD Localization Model . 5-39

Control Vehicle Velocity . 5-40

vi Contents

Sensor Configuration and
Coordinate System Transformations

• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Calibrate a Monocular Camera” on page 1-8

1

Coordinate Systems in Automated Driving Toolbox
Automated Driving Toolbox uses these coordinate systems:

• World: A fixed universal coordinate system in which all vehicles and their sensors are
placed.

• Vehicle: Anchored to the ego vehicle. Typically, the vehicle coordinate system is
placed on the ground right below the midpoint of the rear axle.

• Sensor: Specific to a particular sensor, such as a camera or a radar.
• Spatial: Specific to an image captured by a camera. Locations in spatial coordinates

are expressed in units of pixels.

World Coordinate System
All vehicles, sensors, and their related coordinate systems are placed in the world
coordinate system. A world coordinate system is important in global path planning,
localization, mapping, and driving scenario generation. Units are typically in meters.

Vehicle Coordinate System
The vehicle coordinate system (XV, YV, ZV) used by Automated Driving Toolbox is anchored
to the ego vehicle. The term ego vehicle refers to the vehicle that contains the sensors
that perceive the environment around the vehicle.

• The XV axis points forward from the vehicle.
• The YV axis points to the left, as viewed when facing forward.
• The ZV axis points up from the ground to maintain the right-handed coordinate system.

The vehicle coordinate system follows the ISO convention for rotation. Each axis is
positive in the clockwise direction, when looking in the positive direction of that axis.

1 Sensor Configuration and Coordinate System Transformations

1-2

Typically, the origin of the vehicle coordinate system is placed directly on the ground
below the midpoint of the rear axle. Locations in this coordinate system are expressed in
world units, such as meters.

Values returned by individual sensors are transformed into the vehicle coordinate system
so that they can be placed in a unified frame of reference.

 Coordinate Systems in Automated Driving Toolbox

1-3

For global path planning, localization, mapping, and driving scenario generation, the state
of the vehicle can be described using the pose of the vehicle. The steering angle of the
vehicle is positive in the counterclockwise direction.

Sensor Coordinate System
An automated driving system can contain sensors located anywhere on or in the vehicle.
The location of each sensor contains an origin of its coordinate system. A camera is one
type of sensor used often in an automated driving system. Points represented in a camera
coordinate system are described with the origin located at the optical center of the
camera.

1 Sensor Configuration and Coordinate System Transformations

1-4

The yaw, pitch, and roll angles of sensors follow an ISO convention. These angles have
positive clockwise directions when looking in the positive direction of the Z-, Y-, and X-
axes, respectively.

 Coordinate Systems in Automated Driving Toolbox

1-5

1 Sensor Configuration and Coordinate System Transformations

1-6

Spatial Coordinate System
Spatial coordinates enable you to specify a location in an image with greater granularity
than pixel coordinates. In the pixel coordinate system, a pixel is treated as a discrete unit,
uniquely identified by an integer row and column pair, such as (3,4). In the spatial
coordinate system, locations in an image are represented in terms of partial pixels, such
as (3.3,4.7).

For more information on the spatial coordinate system, see “Spatial Coordinates” (Image
Processing Toolbox).

 Coordinate Systems in Automated Driving Toolbox

1-7

Calibrate a Monocular Camera
A monocular camera is a common type of vision sensor used in automated driving
applications. When mounted on an ego vehicle, this camera can detect objects, detect
lane boundaries, and track objects through a scene.

Before you can use the camera, you must calibrate it. Camera calibration is the process of
estimating the intrinsic and extrinsic parameters of a camera using images of a
calibration pattern, such as a checkerboard. After you estimate the intrinsic and extrinsic
parameters, you can use them to configure a model of a monocular camera.

Estimate Intrinsic Parameters
The intrinsic parameters of a camera are the properties of the camera, such as its focal
length and optical center. To estimate these parameters for a monocular camera, use
Computer Vision Toolbox™ functions and images of a checkerboard pattern.

• If the camera has a standard lens, use the estimateCameraParameters function.
• If the camera has a fisheye lens, use the estimateFisheyeParameters function.

Alternatively, to better visualize the results, use the Camera Calibrator app. For
information on setting up the camera, preparing the checkerboard pattern, and
calibration techniques, see “Single Camera Calibrator App” (Computer Vision Toolbox).

Place Checkerboard for Extrinsic Parameter Estimation
For a monocular camera mounted on a vehicle, the extrinsic parameters define the
mounting position of that camera. These parameters include the rotation angles of the
camera with respect to the vehicle coordinate system, and the height of the camera above
the ground.

Before you can estimate the extrinsic parameters, you must capture an image of a
checkerboard pattern from the camera. Use the same checkerboard pattern that you used
to estimate the intrinsic parameters.

The checkerboard uses a pattern-centric coordinate system (XP, YP), where the XP-axis
points to the right and the YP-axis points down. The checkerboard origin is the bottom-
right corner of the top-left square of the checkerboard.

1 Sensor Configuration and Coordinate System Transformations

1-8

When placing the checkerboard pattern in relation to the vehicle, the XP- and YP-axes
must align with the XV- and YV-axes of the vehicle. In the vehicle coordinate system, the
XV-axis points forward from the vehicle and the YV-axis points to the left, as viewed when
facing forward. The origin is on the road surface, directly below the camera center (the
focal point of the camera).

The orientation of the pattern can be either horizontal or vertical.

 Calibrate a Monocular Camera

1-9

Horizontal Orientation

In the horizontal orientation, the checkerboard pattern is either on the ground or parallel
to the ground. You can place the pattern in front of the vehicle, in back of the vehicle, or
on the left or right side of the vehicle.

Vertical Orientation

In the vertical orientation, the checkerboard pattern is perpendicular to the ground. You
can place the pattern in front of the vehicle, in back of the vehicle, or on the left of right
side of the vehicle.

1 Sensor Configuration and Coordinate System Transformations

1-10

Estimate Extrinsic Parameters
After placing the checkerboard in the location you want, capture an image of it using the
monocular camera. Then, use the estimateMonoCameraParameters function to
estimate the extrinsic parameters. To use this function, you must specify the following:

• The intrinsic parameters of the camera
• The key points detected in the image, in this case the corners of the checkerboard

squares

 Calibrate a Monocular Camera

1-11

• The world points of the checkerboard
• The height of the checkerboard pattern's origin above the ground

For example, for image I and intrinsic parameters intrinsics, the following code
estimates the extrinsic parameters. By default, estimateMonoCameraParameters
assumes that the camera is facing forward and that the checkerboard pattern has a
horizontal orientation.

[imagePoints,boardSize] = detectCheckerboardPoints(I);
squareSize = 0.029; % Square size in meters
worldPoints = generateCheckerboardPoints(boardSize,squareSize);
patternOriginHeight = 0; % Pattern is on ground
[pitch,yaw,roll,height] = estimateMonoCameraParameters(intrinsics, ...
 imagePoints,worldPoints,patternOriginHeight);

To increase estimation accuracy of these parameters, capture multiple images and
average the values of the image points.

Configure Camera Using Intrinsic and Extrinsic Parameters
Once you have the estimated intrinsic and extrinsic parameters, you can use the
monoCamera object to configure a model of the camera. The following sample code shows
how to configure the camera using parameters intrinsics, height, pitch, yaw, and
roll:

monoCam = monoCamera(intrinsics,height,'Pitch',pitch,'Yaw',yaw,'Roll',roll);

See Also
Apps
Camera Calibrator

Functions
detectCheckerboardPoints | estimateCameraParameters |
estimateFisheyeParameters | estimateMonoCameraParameters |
generateCheckerboardPoints

Objects
monoCamera

1 Sensor Configuration and Coordinate System Transformations

1-12

More About
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2
• “Configure Monocular Fisheye Camera”
• “Single Camera Calibrator App” (Computer Vision Toolbox)

 See Also

1-13

Ground Truth Labeling and
Verification

• “Get Started with the Ground Truth Labeler” on page 2-2
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-24

2

Get Started with the Ground Truth Labeler
The Ground Truth Labeler app provides an easy way to mark rectangular region of
interest (ROI) labels, polyline ROI labels, pixel ROI labels, and scene labels in a video or
image sequence. This example gets you started using the app by showing you how to:

• Manually label an image frame from a video.
• Automatically label across image frames using an automation algorithm.
• Export the labeled ground truth data.

Load Unlabeled Data
Open the app and load a video of vehicles driving on a highway. Videos must be in a file
format readable by VideoReader.

groundTruthLabeler('visiontraffic.avi')

Alternatively, open the app from the Apps tab, under Automotive. Then, from the Load
menu, load a video data source.

Explore the video. Click the Play button to play the entire video, or use the slider
to navigate between frames.

2 Ground Truth Labeling and Verification

2-2

The app also enables you to load image sequences, with corresponding timestamps, by
selecting Load > Image Sequence. The images must be readable by imread.

To load a custom data source that is readable by VideoReader or imread, see “Use
Custom Data Source Reader for Ground Truth Labeling” (Computer Vision Toolbox).

Set Time Interval to Label
You can label the entire video or start with a portion of the video. In this example, you
label a five-second time interval within the loaded video. In the text boxes below the
video, enter these times in seconds:

1 In the Start Time box, type 5.
2 In the Current Time box, type 5 so that the slider is at the start of the time interval.

 Get Started with the Ground Truth Labeler

2-3

3 In the End Time box, type 10.

Optionally, to make adjustments to the time interval, click and drag the red interval flags.

The entire app is now set up to focus on this specific time interval. The video plays only
within this interval, and labeling and automation algorithms apply only to this interval.
You can change the interval at any time by moving the flags.

To expand the time interval to fill the entire playback section, click Zoom in Time
Interval.

Create Label Definitions
Define the labels you intend to draw on the video frames. In this example, you define
labels directly within the app. To define labels from the MATLAB® command line instead,
use the labelDefinitionCreator.

Create ROI Labels

An ROI label is a label that corresponds to a region of interest (ROI). You can define these
types of ROI labels.

2 Ground Truth Labeling and Verification

2-4

ROI Label Description Example: Driving Scene
Rectangle Draw rectangular ROI labels

(bounding boxes) around
objects.

Vehicles, pedestrians, road
signs

Line Draw linear ROI labels to
represent lines. To draw a
polyline ROI, use two or
more points.

Lane boundaries, guard
rails, road curbs

 Get Started with the Ground Truth Labeler

2-5

ROI Label Description Example: Driving Scene
Pixel label Assign labels to pixels for

semantic segmentation. See
“Label Pixels for Semantic
Segmentation” (Computer
Vision Toolbox).

Vehicles, road surface,
trees, pavement

In this example, you define a vehicle group for labeling types of vehicles, and then
create a Rectangle ROI label for a Car and a Truck.

1 In the ROI Label Definition pane on the left, click Label.
2 Create a Rectangle label named Car.
3 From the Group dropdown menu, select New Group ... and name the group

Vehicle
4 Click OK.

The Vehicle group name appears in the ROI Label Definition pane with the label
Car created. You can move a labels to a different position or group by left-clicking
and dragging the label.

5 Add a second label. Click Label. Name the label Truck and make sure the Vehicle
group is selected. Click OK.

6 In the first video frame within the time interval, use the mouse to draw rectangular
Car ROIs around the two vehicles.

2 Ground Truth Labeling and Verification

2-6

Create Sublabels

A sublabel is a type of ROI label that corresponds to a parent ROI label. Each sublabel
must belong to, or be a child of, a specific label defined in the ROI Label Definition
pane. For example, in a driving scene, a vehicle label might have sublabels for headlights,
license plates, or wheels.

Define a sublabel for headlights.

1 In the ROI Label Definition pane on the left, click the Car label.
2 Click Sublabel.
3 Create a Rectangle sublabel named headlight and optionally write a description.

Click OK.

The headlight sublabel appears in the ROI Label Definition pane. The sublabel is
nested under the selected ROI label, Car, and has the same color as its parent label.

You can add multiple sublabels under a label. You can also drag-and-drop the
sublabels to reorder them in the list. Right-click any label for additional edits.

 Get Started with the Ground Truth Labeler

2-7

4 In the ROI Label Definition pane, select the headlight sublabel.
5 In the video frame, select the Car label. The label turns yellow when selected. You

must select the Car label (parent ROI) before you can add a sublabel to it.

Draw headlight sublabels for each of the cars.
6 Repeat the previous steps to label the headlights of the other car. To draw the labels

more precisely, use the Pan, Zoom In, and Zoom Out options available from the
toolstrip.

2 Ground Truth Labeling and Verification

2-8

Sublabels can only be used with rectangular or polyline ROI labels and cannot have their
own sublabels. For more details on working with sublabels, see “Use Sublabels and
Attributes to Label Ground Truth Data” (Computer Vision Toolbox).

Create Attributes

An attribute provides further categorization of an ROI label or sublabel. Attributes specify
additional information about a drawable label. For example, in a driving scene, attributes
might include the type or color of a vehicle.

You can define these types of attributes.

Attribute Type Sample Attribute
Definition

Sample Default Values

Numeric Value

String

Logical

 Get Started with the Ground Truth Labeler

2-9

Attribute Type Sample Attribute
Definition

Sample Default Values

List

Add an attribute for the vehicle type.

1 In the ROI Label Definition pane on the left, select the Car label and click
Attribute.

2 In the Attribute Name box, type carType. Set the attribute type to List.
3 In the List Items section, type different types of cars, such as Sedan, Hatchback,

and Wagon, each on its own line. Optionally give the attribute a description, and click
OK.

2 Ground Truth Labeling and Verification

2-10

4 In the first frame of the video, select a Car ROI label. In the Attributes and
Sublabels pane, select the appropriate carType attribute value for that vehicle.

5 Repeat the previous step to assign a carType attribute to the other vehicle.

You can also add attributes to sublabels. Add an attribute for the headlight sublabel that
tells whether the headlight is on.

1 In the ROI Label Definition pane on the left, select the headlight sublabel and
click Attribute.

 Get Started with the Ground Truth Labeler

2-11

2 In the Attribute Name box, type isOn. Set the attribute type to Logical. Leave the
Default Value set to Empty, optionally write a description, and click OK.

3 Select a headlight in the video frame. Set the appropriate isOn attribute value, or
leave the attribute value set to Empty.

4 Repeat the previous step to set the isOn attribute for the other headlights.

2 Ground Truth Labeling and Verification

2-12

To delete an attribute, right-click an ROI label or sublabel, and select the attribute to
delete. Deleting the attribute removes attribute information from all previously created
ROI label annotations.

Create Scene Labels

A scene label defines additional information for the entire scene. Use scene labels to
describe conditions, such as lighting and weather, or events, such as lane changes.

Create a scene label to use in the video.

1 In the Scene Label Definition pane on the left, click the Define new scene label
button, and create a scene label named sunny. Make sure Group is set to None.
Click OK.

The Scene Label Definition pane shows the scene label definition. The scene labels
that are applied to the current frame appear in the Scene Labels pane on the right.
The sunny scene label is empty (white), because the scene label has not yet been
applied to the frame.

2 The entire scene is sunny, so specify to apply the sunny scene label over the entire
time interval. With the sunny scene label definition still selected in the Scene Label
Definition pane, select Time Interval.

3 Click Add Label.

The sunny label now applies to all frames in the time interval.

 Get Started with the Ground Truth Labeler

2-13

Label Ground Truth
So far, you have labeled only one frame in the video. To label the remaining frames,
choose one of these options.

Label Ground Truth Manually

When you click the right arrow key to advance to the next frame, the ROI labels from the
previous frame do not carry over. Only the sunny scene label applies to each frame,
because this label was applied over the entire time interval.

Advance frame by frame and draw the label and sublabel ROIs manually. Also update the
attribute information for these ROIs.

Label Ground Truth Using Automation Algorithm

To speed up the labeling process, you can use an automation algorithm within the app.
You can either define your own automation algorithm, see “Create Automation Algorithm
for Labeling” (Computer Vision Toolbox) and “Temporal Automation Algorithms”
(Computer Vision Toolbox), or use a built-in automation algorithm. In this example, you
label the ground truth using a built-in point tracking algorithm.

In this example, you automate the labeling of only the Car ROI labels. The built-in
automation algorithms do not support sublabel and attribute automation.

1 Select the labels you want to automate. In the first frame of the video, press Ctrl and
click to select the two Car label annotations. The labels are highlighted in yellow.

2 Ground Truth Labeling and Verification

2-14

2 From the app toolstrip, select Select Algorithm > Point Tracker. This algorithm
tracks one or more rectangle ROIs over short intervals using the Kanade-Lucas-
Tomasi (KLT) algorithm.

3 (optional) Configure the automation settings. Click Configure Automation. By
default, the automation algorithm applies labels from the start of the time interval to
the end. To change the direction and start time of the algorithm, choose one of the
options shown in this table.

Direction of
automation

Run algorithm from Example

 Get Started with the Ground Truth Labeler

2-15

Direction of
automation

Run algorithm from Example

The Import selected ROIs must be selected so that the Car labels you selected are
imported into the automation session.

4 Click Automate to open an automation session. The algorithm instructions appear in
the right pane, and the selected labels are available to automate.

2 Ground Truth Labeling and Verification

2-16

5 Click Run to track the selected ROIs over the interval.
6 Examine the results of running the algorithm.

The vehicles that enter the scene later are unlabeled. The unlabeled vehicles did not
have an initial ROI label, so the algorithm did not track them. Click Undo Run. Use
the slider to find the frames where each vehicle first appears. Draw vehicle ROIs
around each vehicle, and then click Run again.

7 Advance frame by frame and manually move, resize, delete, or add ROIs to improve
the results of the automation algorithm.

When you are satisfied with the algorithm results, click Accept. Alternatively, to
discard labels generated during the session and label manually instead, click Cancel.
The Cancel button cancels only the algorithm session, not the app session.

Optionally, you can now manually label the remaining frames with sublabel and attribute
information.

To further evaluate your labels, you can view a visual summary of the labeled ground
truth. From the app toolstrip, select View Label Summary. Use this summary to
compare the frames, frequency of labels, and scene conditions. For more details, see
“View Summary of Ground Truth Labels” (Computer Vision Toolbox). This summary does
not support sublabels or attributes.

 Get Started with the Ground Truth Labeler

2-17

Export Labeled Ground Truth
You can export the labeled ground truth to a MAT-file or to a variable in the MATLAB
workspace. In both cases, the labeled ground truth is stored as a groundTruth object.
You can use this object to train a deep-learning-based computer vision algorithm. For
more details, see “Train Object Detector or Semantic Segmentation Network from Ground
Truth Data” (Computer Vision Toolbox).

Note If you export pixel data, the pixel label data and ground truth data are saved in
separate files but in the same folder. For considerations when working with exported pixel
labels, see “How Labeler Apps Store Exported Pixel Labels” (Computer Vision Toolbox).

In this example, you export the labeled ground truth to the MATLAB workspace. From the
app toolstrip, select Export Labels > To Workspace. The exported MATLAB variable,
gTruth, is a groundTruth object.

Display the properties of the exported groundTruth object. The information in your
exported object might differ from the information shown here.

gTruth

gTruth =

 groundTruth with properties:

 DataSource: [1×1 groundTruthDataSource]
 LabelDefinitions: [3×5 table]
 LabelData: [531×3 timetable]

Data Source

DataSource is a groundTruthDataSource object containing the path to the video and
the video timestamps. Display the properties of this object.

gTruth.DataSource

ans =

groundTruthDataSource for a video file with properties

 Source: ...matlab\toolbox\vision\visiondata\visiontraffic.avi
 TimeStamps: [531×1 duration]

2 Ground Truth Labeling and Verification

2-18

Label Definitions

LabelDefinitions is a table containing information about the label definitions. This
table does not contain information about the labels that are drawn on the video frames.
To save the label definitions in their own MAT-file, from the app toolstrip, select Save >
Label Definitions. You can then import these label definitions into another app session
by selecting Import Files.

Display the label definitions table. Each row contains information about an ROI label
definition or a scene label definition. If you exported pixel label data, the
LabelDefinitions table also includes a PixelLabelID column containing the ID
numbers for each pixel label definition.

gTruth.LabelDefinitions

ans =

 3×5 table

 Name Type Group Description Hierarchy
 _______ _________ _________ ___________ ____________

 'Car' Rectangle 'Vehicle' '' [1×1 struct]
 'Truck' Rectangle 'Vehicle' '' []
 'sunny' Scene 'None' '' []

Within LabelDefinitions, the Hierarchy column stores information about the
sublabel and attribute definitions of a parent ROI label.

Display the sublabel and attribute information for the Car label.

gTruth.LabelDefinitions.Hierarchy{1}

ans =

 struct with fields:

 carType: [1×1 struct]
 headlight: [1×1 struct]
 Type: Rectangle
 Description: ''

Display information about the headlight sublabel.

gTruth.LabelDefinitions.Hierarchy{1}.headlight

 Get Started with the Ground Truth Labeler

2-19

ans =

 struct with fields:

 Type: Rectangle
 Description: ''
 isOn: [1×1 struct]

Display information about the carType attribute.

gTruth.LabelDefinitions.Hierarchy{1}.carType

ans =

 struct with fields:

 ListItems: {3×1 cell}
 Description: ''

Label Data

LabelData is a timetable containing information about the ROI labels drawn at each
timestamp, across the entire video. The timetable contains one column per label.

Display the first few rows of the timetable. The first few timestamps indicate that no
vehicles were detected and that the sunny scene label is false. These results are
because this portion of the video was not labeled. Only the time interval of 5–10 seconds
was labeled.

labelData = gTruth.labelData;
head(labelData)

ans =

 8×3 timetable

 Time Car Truck sunny
 __________ ____________ ____________ _____

 5.005 sec [1×2 struct] [1×0 struct] true
 5.0384 sec [1×2 struct] [1×0 struct] true
 5.0717 sec [1×2 struct] [1×0 struct] true
 5.1051 sec [1×2 struct] [1×0 struct] true
 5.1385 sec [1×2 struct] [1×0 struct] true
 5.1718 sec [1×2 struct] [1×0 struct] true

2 Ground Truth Labeling and Verification

2-20

 5.2052 sec [1×2 struct] [1×0 struct] true
 5.2386 sec [1×2 struct] [1×0 struct] true
 ...

Display the first few timetable rows from the 5-10 second interval that contains labels.

gTruthInterval = labelData(timerange('00:00:05','00:00:10'),:);
head(gTruthInterval)

ans =

 8×3 timetable

 Time Car Truck sunny
 __________ ____________ ____________ _____

 5.005 sec [1×2 struct] [1×0 struct] true
 5.0384 sec [1×2 struct] [1×0 struct] true
 5.0717 sec [1×2 struct] [1×0 struct] true
 5.1051 sec [1×2 struct] [1×0 struct] true
 5.1385 sec [1×2 struct] [1×0 struct] true
 5.1718 sec [1×2 struct] [1×0 struct] true
 5.2052 sec [1×2 struct] [1×0 struct] true
 5.2386 sec [1×2 struct] [1×0 struct] true

For each Car label, the structure includes the position of the bounding box and
information about its sublabels and attributes.

Display the bounding box positions for the vehicles at the start of the time interval. Your
bounding box positions might differ from the ones shown here.

gTruthInterval(1,:).Car{1}.Position % [x y width height], in pixels

ans =

 1×4 single row vector

 415.8962 82.4737 130.8474 129.3805

ans =

 1×4 single row vector

 235.2182 1.0000 117.0611 55.3500

 Get Started with the Ground Truth Labeler

2-21

Save App Session
From the app toolstrip, select Save and save a MAT-file of the app session. The saved
session includes the data source, label definitions, and labeled ground truth. It also
includes your session preferences, such as the layout of the app. To change layout
options, select Layout.

The app session MAT-file is separate from the ground truth MAT-file that is exported when
you select Export > From File. To share labeled ground truth data, as a best practice,
share the ground truth MAT-file containing the groundTruth object, not the app session
MAT-file. For more details, see “Share and Store Labeled Ground Truth Data” (Computer
Vision Toolbox).

See Also
Apps
Ground Truth Labeler

Objects
driving.connector.Connector | groundTruth | groundTruthDataSource |
labelDefinitionCreator | vision.labeler.AutomationAlgorithm |
vision.labeler.mixin.Temporal

Related Examples
• “Automate Ground Truth Labeling of Lane Boundaries”
• “Automate Ground Truth Labeling for Semantic Segmentation”
• “Automate Attributes of Labeled Objects”
• “Evaluate Lane Boundary Detections Against Ground Truth Data”
• “Evaluate and Visualize Lane Boundary Detections Against Ground Truth”

More About
• “Use Custom Data Source Reader for Ground Truth Labeling” (Computer Vision

Toolbox)
• “Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler” on page 2-24
• “Use Sublabels and Attributes to Label Ground Truth Data” (Computer Vision

Toolbox)

2 Ground Truth Labeling and Verification

2-22

• “Label Pixels for Semantic Segmentation” (Computer Vision Toolbox)
• “Create Automation Algorithm for Labeling” (Computer Vision Toolbox)
• “View Summary of Ground Truth Labels” (Computer Vision Toolbox)
• “Share and Store Labeled Ground Truth Data” (Computer Vision Toolbox)
• “Train Object Detector or Semantic Segmentation Network from Ground Truth

Data” (Computer Vision Toolbox)

 See Also

2-23

Keyboard Shortcuts and Mouse Actions for Ground Truth
Labeler

Note On Macintosh platforms, use the Command (⌘) key instead of Ctrl.

Label Definitions
Task Action
In the ROI Label Definition pane,
navigate through ROI labels and their
groups

Up arrow or down arrow

In the Scene Label Definition pane,
navigate through scene labels and their
groups

Hold Alt and press the up arrow or down
arrow

Reorder labels within a group or move
labels between groups

Click and drag labels

Reorder groups Click and drag groups

Frame Navigation and Time Interval Settings
Navigate between frames in a video or image sequence, and change the time interval of
the video or image sequence. These controls are located in the bottom pane of the app.

Task Action
Go to the next frame Right arrow
Go to the previous frame Left arrow
Go to the last frame • PC: End

• Mac: Hold Fn and press the right arrow
Go to the first frame • PC: Home

• Mac: Hold Fn and press the left arrow
Navigate through time interval boxes and
frame navigation buttons

Tab

2 Ground Truth Labeling and Verification

2-24

Task Action
Commit time interval settings Press Enter within the active time interval

box (Start Time, Current, or End Time)

Labeling Window
Perform labeling actions, such as adding, moving, and deleting regions of interest (ROIs),
on the current image or video frame.

Task Action
Undo labeling action Ctrl+Z
Redo labeling action Ctrl+Y
Select all rectangle and line ROIs Ctrl+A
Select specific rectangle and line ROIs Hold Ctrl and click the ROIs you want to

select
Cut selected rectangle and line ROIs Ctrl+X
Copy selected rectangle and line ROIs to
clipboard

Ctrl+C

Paste copied rectangle and line ROIs

• If a sublabel was copied, both the
sublabel and its parent label are pasted.

• If a parent label was copied, only the
parent label is pasted, not its sublabels.

For more details, see “Use Sublabels and
Attributes to Label Ground Truth Data”
(Computer Vision Toolbox).

Ctrl+V

Delete selected rectangle and line ROIs Delete

Polyline Drawing
Draw ROI line labels on a frame. ROI line labels are polylines, meaning that they are
composed of one or more line segments.

 Keyboard Shortcuts and Mouse Actions for Ground Truth Labeler

2-25

Task Action
Commit a polyline to the frame, excluding
the currently active line segment

Press Enter or right-click while drawing
the polyline

Commit a polyline to the frame, including
the currently active line segment

Double-click while drawing the polyline

A new line segment is committed at the
point where you double-click.

Delete the previously created line segment
in a polyline

Backspace

Cancel drawing and delete the entire
polyline

Escape

Polygon Drawing
Draw polygons to label pixels on a frame.

Task Action
Commit a polygon to the frame, excluding
the currently active line segment

Press Enter or right-click while drawing
the polygon

The polygon closes up by forming a line
between the previously committed point
and the first point in the polygon.

Commit a polygon to the frame, including
the currently active line segment

Double-click while drawing polygon

The polygon closes up by forming a line
between the point where you double-clicked
and the first point in the polygon.

Remove the previously created line
segment from a polygon

Backspace

Cancel drawing and delete the entire
polygon

Escape

2 Ground Truth Labeling and Verification

2-26

Zooming
Task Action
Zoom in or out of frame Move the scroll wheel up (zoom in) or down

(zoom out)

The scroll wheel works in Zoom In or
Zoom Out mode but not Label or Pan
modes.

Zoom in on specific section of frame From the app toolstrip, under Modes,
select Zoom In. Then, draw a box around
the section of the frame you want to zoom
in on.

App Sessions
Task Action
Save current session Ctrl+S

See Also
Ground Truth Labeler

More About
• “Get Started with the Ground Truth Labeler” on page 2-2

 See Also

2-27

Tracking and Sensor Fusion

• “Visualize Sensor Data and Tracks in Bird's-Eye Scope” on page 3-2
• “Linear Kalman Filters” on page 3-11
• “Extended Kalman Filters” on page 3-18

3

Visualize Sensor Data and Tracks in Bird's-Eye Scope
The Bird's-Eye Scope visualizes signals from your Simulink model that represent aspects
of a driving scenario. Using the scope, you can analyze:

• Sensor coverages of vision and radar sensors
• Sensor detections of actors and lane boundaries
• Tracks of moving objects in the scenario

This example shows you how to display these signals on the scope and analyze the signals
during simulation.

Open Model and Scope
Open a model containing signals for sensor detections and for tracks. This model is used
in the “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink” example.

model = fullfile(matlabroot,'examples','driving','SyntheticDataSimulinkExample');
open_system(model)

Open the scope. From the Simulink model toolbar, click the Bird's-Eye Scope button

. If instead you see a button for a different model visualization tool, such as the

Simulation Data Inspector or Logic Analyzer , click the arrow next to
the displayed button and select Bird's-Eye Scope.

3 Tracking and Sensor Fusion

3-2

Find Signals
When you first open the Bird's-Eye Scope, the scope canvas is blank and displays no
signals. To find signals from the opened model that the scope can display, from the scope
toolstrip, click Find Signals. The scope updates the block diagram and automatically
finds the signals in the model.

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-3

The left pane lists all the signals that the scope found. These signals are grouped based
on their sources within the model.

3 Tracking and Sensor Fusion

3-4

Signal Group Description Signal Sources
Ground Truth Road boundaries, lane

markings, and actors in the
scenario, including the ego
vehicle

You cannot modify this
group or any of the signals
within it.

• Scenario Reader block
• Vision Detection

Generator and Radar
Detection Generator
blocks (for actor profile
information only, such as
the length, width, and
height of actors)

• If actor profile
information is not set
or is inconsistent
between blocks, the
scope sets the actor
profiles to the block
defaults.

• The profile of the ego
vehicle is always set
to the block defaults.

Sensor Coverage Coverage areas of your
vision and radar sensors,
sorted into Vision and
Radar subgroups

You can move or modify
these subgroups and their
signals. You cannot move or
modify the top-level Sensor
Coverage group.

• Vision Detection
Generator block

• Radar Detection
Generator block

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-5

Signal Group Description Signal Sources
Detections Detections obtained from

your vision and radar
sensors, sorted into Vision
and Radar subgroups

You can move or modify
these subgroups and their
signals. You cannot move or
modify the top-level
Detections group.

• Vision Detection
Generator block

• Radar Detection
Generator block

Tracks Tracks of objects in the
scenario

• Multi Object Tracker
block

Other Applicable Signals Signals that the scope
cannot automatically group,
such as ones that combine
information from multiple
sensors

Signals in this group do not
display during simulation.

• Blocks that combine or
cluster signals (such as
the Detection
Concatenation block)

• Nonvirtual Simulink
buses containing position
and velocity information
for detections and tracks

The scope canvas displays the signals grouped in Ground Truth and Sensor Coverage
only. The signals in Detections and Tracks do not display until you simulate the model.
The signals in Other Applicable Signals do not display during simulation. If you want
the scope to display specific signals, move them into the appropriate group before
simulation. If an appropriate group does not exist, create one.

Run Simulation
Simulate the model from within the Bird's-Eye Scope by clicking Run. The scope canvas
displays the detections and tracks.

3 Tracking and Sensor Fusion

3-6

During simulation, the scope canvas remains centered on the ego vehicle. You can pan
and zoom to inspect other parts of the model during simulation. To center on the ego

vehicle again, in the upper right corner of the scope canvas, click the home button .

You can update the properties of signals during simulation. To access the properties of a
signal, first select the signal from the left pane. Then, from the scope toolstrip, click
Properties. For example, with these properties, you can show and hide coverages or
detections. You can also change the color or transparency of certain coverages to
highlight them.

 Visualize Sensor Data and Tracks in Bird's-Eye Scope

3-7

Under Settings, you can change the axis limits and the display of the signal names
during simulation. You cannot change the Track position selector and Track velocity
selector parameters during simulation. For more details on these parameters, see the
parameters section on the Bird's-Eye Scope reference page.

To prevent signals from displaying during the next simulation, first right-click the signal.
Then, select Move to Other Applicable to move that signal into the Other Applicable
Signals group.

Organize Signal Groups (Optional)
To further organize the signals, you can rename signal groups or move signals into new
groups. For example, you can rename the Vision and Radar subgroups to Front of Car
and Back of Car. Then you can drag the signals as needed to move them into the
appropriate groups based on the new group names. When you drag a signal to a new
group, the color of the signal changes to match the color assigned to its group.

You cannot delete or modify the top-level groups in the left pane, but you can modify or
delete any subgroup. If you delete a subgroup, its signals are moved automatically to the
group that contained that subgroup.

Update Model and Rerun Simulation
After you run the simulation, modify the model and inspect how the changes affect the
visualization on the Bird's-Eye Scope. For example, in the Sensor Simulation subsystem
of the model, open the Vision Detection Generator blocks. Then, on the Measurements
tab, reduce the Maximum detection range (m) parameter to 50. To see how the sensor
coverage changes, rerun the simulation.

When you modify block parameters, you can rerun the simulation without having to find
signals again. If you add or remove blocks, ports, or signal lines, then you must click Find
Signals again before rerunning the simulation.

Save and Close Model
Save and close the model. The settings for the Bird's-Eye Scope are also saved.

If you reopen the model and the Bird's-Eye Scope, the scope canvas is initially blank.

3 Tracking and Sensor Fusion

3-8

Click Find Signals to find the signals again and view the saved signal properties. For
example, if you reduced the detection range in the previous step, the scope canvas
displays this reduced range.

See Also
Bird's-Eye Scope | Detection Concatenation | Multi Object Tracker | Radar Detection
Generator | Scenario Reader | Vision Detection Generator

Related Examples
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”

 See Also

3-9

• “Lateral Control Tutorial”
• “Autonomous Emergency Braking with Sensor Fusion”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 4-72
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 4-78

3 Tracking and Sensor Fusion

3-10

Linear Kalman Filters
In this section...
“State Equations” on page 3-11
“Measurement Models” on page 3-13
“Linear Kalman Filter Equations” on page 3-13
“Filter Loop” on page 3-14
“Constant Velocity Model” on page 3-15
“Constant Acceleration Model” on page 3-16

When you use a Kalman filter to track objects, you use a sequence of detections or
measurements to construct a model of the object motion. Object motion is defined by the
evolution of the state of the object. The Kalman filter is an optimal, recursive algorithm
for estimating the track of an object. The filter is recursive because it updates the current
state using the previous state, using measurements that may have been made in the
interval. A Kalman filter incorporates these new measurements to keep the state estimate
as accurate as possible. The filter is optimal because it minimizes the mean-square error
of the state. You can use the filter to predict future states or estimate the current state or
past state.

State Equations
For most types of objects tracked in Automated Driving Toolbox, the state vector consists
of one-, two- or three-dimensional positions and velocities.

Start with Newton equations for an object moving in the x-direction at constant
acceleration and convert these equations to space-state form.

mẍ = f

ẍ = f
m = a

If you define the state as

x1 = x
x2 = ẋ,

you can write Newton’s law in state-space form.

 Linear Kalman Filters

3-11

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a

You use a linear dynamic model when you have confidence that the object follows this
type of motion. Sometimes the model includes process noise to reflect uncertainty in the
motion model. In this case, Newton’s equations have an additional term.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a +
0
1

vk

vk and is the unknown noise perturbations of the acceleration. Only the statistics of the
noise are known. It is assumed to be zero-mean Gaussian white noise.

You can extend this type of equation to more than one dimension. In two dimensions, the
equation has the form

d
dt

x1
x2
y1
y2

=

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x1
x2
y1
y2

+

0
ax
0
ay

+

0
vx
0
vy

The 4-by-4 matrix on the right side is the state transition model matrix. For independent
x- and y- motions, this matrix is block diagonal.

When you transition to discrete time, you integrate the equations of motion over the
length of the time interval. In discrete form, for a sample interval of T, the state-
representation becomes

x1, k + 1
x2, k + 1

=
1 T
0 1

x1, k
x2, k

+
0
T

a +
0
1

v

The quantity xk+1 is the state at discrete time k+1, and xk is the state at the earlier
discrete time, k. If you include noise, the equation becomes more complicated, because
the integration of noise is not straightforward.

The state equation can be generalized to

xk + 1 = Fkxk + Gkuk + vk

Fk is the state transition matrix and Gk is the control matrix. The control matrix takes into
account any known forces acting on the object. Both of these matrices are given. The last

3 Tracking and Sensor Fusion

3-12

term represents noise-like random perturbations of the dynamic model. The noise is
assumed to be zero-mean Gaussian white noise.

Continuous-time systems with input noise are described by linear stochastic differential
equations. Discrete-time systems with input noise are described by linear stochastic
differential equations. A state-space representation is a mathematical model of a physical
system where the inputs, outputs, and state variables are related by first-order coupled
equations.

Measurement Models
Measurements are what you observe about your system. Measurements depend on the
state vector but are not always the same as the state vector. For instance, in a radar
system, the measurements can be spherical coordinates such as range, azimuth, and
elevation, while the state vector is the Cartesian position and velocity. For the linear
Kalman filter, the measurements are always linear functions of the state vector, ruling out
spherical coordinates. To use spherical coordinates, use the extended Kalman filter.

The measurement model assumes that the actual measurement at any time is related to
the current state by

zk = Hkxk + wk

wk represents measurement noise at the current time step. The measurement noise is also
zero-mean white Gaussian noise with covariance matrix Q described by Qk = E[nknk

T].

Linear Kalman Filter Equations
Without noise, the dynamic equations are

xk + 1 = Fkxk + Gkuk .

Likewise, the measurement model has no measurement noise contribution. At each
instance, the process and measurement noises are not known. Only the noise statistics
are known. The

zk = Hkxk

You can put these equations into a recursive loop to estimate how the state evolves and
also how the uncertainties in the state components evolve.

 Linear Kalman Filters

3-13

Filter Loop
Start with a best estimate of the state, x0/0, and the state covariance, P0/0. The filter
performs these steps in a continual loop.

1 Propagate the state to the next step using the motion equations.

xk + 1 k = Fkxk k + Gkuk .

Propagate the covariance matrix as well.

Pk + 1 k = FkPk kFk
T + Qk .

The subscript notation k+1|k indicates that the quantity is the optimum estimate at
the k+1 step propagated from step k. This estimate is often called the a priori
estimate.

Then predict the measurement at the updated time.

zk + 1 k = Hk + 1xk + 1 k

2 Use the difference between the actual measurement and predicted measurement to
correct the state at the updated time. The correction requires computing the Kalman
gain. To do this, first compute the measurement prediction covariance (innovation)

Sk + 1 = Hk + 1Pk + 1 kHk + 1
T + Rk + 1

Then the Kalman gain is

Kk + 1 = Pk + 1 kHk + 1
T Sk + 1

−1

and is derived from using an optimality condition.
3 Correct the predicted estimate with the measurement. Assume that the estimate is a

linear combination of the predicted state and the measurement. The estimate after
correction uses the subscript notation, k+1|k+1. is computed from

xk + 1 k + 1 = xk + 1 k + Kk + 1(zk + 1− zk + 1 k)

where Kk+1 is the Kalman gain. The corrected state is often called the a posteriori
estimate of the state because it is derived after the measurement is included.

Correct the state covariance matrix

3 Tracking and Sensor Fusion

3-14

Pk + 1 k + 1 = Pk + 1 k− Kk + 1Sk + 1K′k + 1

Finally, you can compute a measurement based upon the corrected state. This is not a
correction to the measurement but is a best estimate of what the measurement would
be based upon the best estimate of the state. Comparing this to the actual
measurement gives you an indication of the performance of the filter.

This figure summarizes the Kalman loop operations.

Constant Velocity Model
The linear Kalman filter contains a built-in linear constant-velocity motion model.
Alternatively, you can specify the transition matrix for linear motion. The state update at
the next time step is a linear function of the state at the present time. In this filter, the

 Linear Kalman Filters

3-15

measurements are also linear functions of the state described by a measurement matrix.
For an object moving in 3-D space, the state is described by position and velocity in the x-,
y-, and z-coordinates. The state transition model for the constant-velocity motion is

xk + 1
vx, k + 1
yk + 1

vy, k + 1
zk + 1

vz, k + 1

=

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

xk
vx, k
yk

vy, k
zk

vz, k

The measurement model is a linear function of the state vector. The simplest case is one
where the measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

xk
vx, k
yk

vy, k
zk

vz, k

Constant Acceleration Model
The linear Kalman filter contains a built-in linear constant-acceleration motion model.
Alternatively, you can specify the transition matrix for constant-acceleration linear
motion. The transition model for linear acceleration is

3 Tracking and Sensor Fusion

3-16

xk + 1
vx, k + 1
ax, k + 1
yk + 1

vy, k + 1
ay, k + 1
zk + 1

vz, k + 1
az, k + 1

=

1 T 1
2T2 0 0 0 0 0 0

0 1 T 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 T 1
2T2 0 0 0

0 0 0 0 1 T 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T 1
2T2

0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 1

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
az, k

The simplest case is one where the measurements are the position components of the
state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
ay, k

 Linear Kalman Filters

3-17

Extended Kalman Filters
In this section...
“State Update Model” on page 3-18
“Measurement Model” on page 3-19
“Extended Kalman Filter Loop” on page 3-19
“Predefined Extended Kalman Filter Functions” on page 3-20

Use an extended Kalman filter when object motion follows a nonlinear state equation or
when the measurements are nonlinear functions of the state. A simple example is when
the state or measurements of the object are calculated in spherical coordinates, such as
azimuth, elevation, and range.

State Update Model
The extended Kalman filter formulation linearizes the state equations. The updated state
and covariance matrix remain linear functions of the previous state and covariance
matrix. However, the state transition matrix in the linear Kalman filter is replaced by the
Jacobian of the state equations. The Jacobian matrix is not constant but can depend on
the state itself and time. To use the extended Kalman filter, you must specify both a state
transition function and the Jacobian of the state transition function.

Assume there is a closed-form expression for the predicted state as a function of the
previous state, controls, noise, and time.

xk + 1 = f (xk, uk, wk, t)

The Jacobian of the predicted state with respect to the previous state is

F(x) = ∂ f
∂x .

The Jacobian of the predicted state with respect to the noise is

F(w) = ∂ f
∂wi

.

These functions take simpler forms when the noise enters linearly into the state update
equation:

3 Tracking and Sensor Fusion

3-18

xk + 1 = f (xk, uk, t) + wk

In this case, F(w) = 1M.

Measurement Model
In the extended Kalman filter, the measurement can be a nonlinear function of the state
and the measurement noise.

zk = h(xk, vk, t)

The Jacobian of the measurement with respect to the state is

H(x) = ∂h
∂x .

The Jacobian of the measurement with respect to the measurement noise is

H(v) = ∂h
∂v .

These functions take simpler forms when the noise enters linearly into the measurement
equation:

zk = h(xk, t) + vk

In this case, H(v) = 1N.

Extended Kalman Filter Loop
This is extended kalman filter loop is almost identical to the linear Kalman filter loop
except that:

• The exact nonlinear state update and measurement functions are used whenever
possible and the state transition matrix is replaced by the state Jacobian

• The measurement matrices are replaced by the appropriate Jacobians.

 Extended Kalman Filters

3-19

Predefined Extended Kalman Filter Functions
Automated Driving Toolbox provides predefined state update and measurement functions
to use in the extended Kalman filter.

Motion Model Function Name Function Purpose
Constant velocity constvel Constant-velocity state

update model
constveljac Constant-velocity state

update Jacobian

3 Tracking and Sensor Fusion

3-20

Motion Model Function Name Function Purpose
cvmeas Constant-velocity

measurement model
cvmeasjac Constant-velocity

measurement Jacobian
Constant acceleration constacc Constant-acceleration state

update model
constaccjac Constant-acceleration state

update Jacobian
cameas Constant-acceleration

measurement model
cameasjac Constant-acceleration

measurement Jacobian
Constant turn rate constturn Constant turn-rate state

update model
constturnjac Constant turn-rate state

update Jacobian
ctmeas Constant turn-rate

measurement model
ctmeasjac Constant-turnrate

measurement Jacobian

 Extended Kalman Filters

3-21

Driving Scenario Generation and
Sensor Models

4

Build a Driving Scenario and Generate Synthetic
Detections

This example shows you how to build a driving scenario and generate vision and radar
sensor detections from it by using the Driving Scenario Designer app. You can use
these detections to test your controllers or sensor fusion algorithms.

This example covers the entire workflow for creating a scenario and generating synthetic
detections. Alternatively, you can generate detections from prebuilt scenarios. For more
details, see “Generate Synthetic Detections from a Prebuilt Driving Scenario” on page 4-
18.

Create a New Driving Scenario
To open the app, at the MATLAB command prompt, enter drivingScenarioDesigner.

Add a Road
Add a curved road to the scenario canvas. From the app toolstrip, click Add Road. Then
click one corner of the canvas, extend the road to the opposite corner, and double-click to
create the road.

4 Driving Scenario Generation and Sensor Models

4-2

 Build a Driving Scenario and Generate Synthetic Detections

4-3

To make the road curve, add a road center around which to curve it. Right-click the
middle of the road and select Add Road Center. Then drag the added road center to one
of the empty corners of the canvas.

4 Driving Scenario Generation and Sensor Models

4-4

 Build a Driving Scenario and Generate Synthetic Detections

4-5

To adjust the road further, you can click and drag any of the road centers. To create more
complex curves, add more road centers.

Add Lanes
By default, the road is a single lane and has no lane markings. To make the scenario more
realistic, convert the road into a two-lane highway. In the left pane, on the Roads tab,
expand the Lanes section. Set the Number of lanes to 2 and the Lane Width to 3.6
meters, which is a typical highway lane width.

4 Driving Scenario Generation and Sensor Models

4-6

The road is now one-way and has solid lane markings on either side to indicate the
shoulder. Make the road two-way by converting the center lane marking from a single
dashed line to a solid double-yellow line. From the Marking list, select 2:Dashed. Then
set the Type to DoubleSolid and specify the Color as the string yellow.

 Build a Driving Scenario and Generate Synthetic Detections

4-7

Add Vehicles
By default, the first car that you add to a scenario the ego vehicle, which is the main car
in the driving scenario. The ego vehicle contains the sensors that detect the lane
markings, pedestrians, or other cars in the scenario. Add the ego vehicle, and then add a
second car for the ego vehicle to detect.

Add Ego Vehicle

To add the ego vehicle, right-click one end of the road, and select Add Car. To specify the
trajectory of the car, right-click the car, select Add Waypoints, and add waypoints along
the road for the car to pass through. After you add the last waypoint along the road, press
Enter. The car autorotates in the direction of the first waypoint. For finer precision over

4 Driving Scenario Generation and Sensor Models

4-8

the trajectory, you can adjust the waypoints. You can also right-click the path to add new
waypoints.

Now adjust the speed of the car. In the left pane, on the Actors tab, set Constant Speed
to 15 m/s. For more control over the speed of the car, clear the Constant Speed check
box and set the velocity between waypoints in the Waypoints table.

Add Second Car

Add a vehicle for the ego vehicle to detect. From the app toolstrip, click Add Actor and
select Car. Add the second car with waypoints, driving in the lane opposite from the ego
vehicle and on the other end of the road. Leave the speed and other settings of the car
unchanged.

 Build a Driving Scenario and Generate Synthetic Detections

4-9

Add a Pedestrian
Add to the scenario a pedestrian crossing the road. Zoom in (Ctrl+Plus) on the middle of
the road, right-click one side of the road, and click Add Pedestrian. Then, to set the path
of the pedestrian, add a waypoint on the other side of the road.

4 Driving Scenario Generation and Sensor Models

4-10

To test the speed of the cars and the pedestrian, run the simulation. Adjust actor speeds
or other properties as needed by selecting the actor from the left pane of the Actors tab.

 Build a Driving Scenario and Generate Synthetic Detections

4-11

Add Sensors
Add front-facing radar and vision (camera) sensors to the ego vehicle. Use these sensors
to generate detections of the pedestrian, the lane boundaries, and the other vehicle.

Add Camera

From the app toolstrip, click Add Camera. The sensor canvas shows standard locations
at which to place sensors. Click the front-most predefined sensor location to add a camera
sensor to the front bumper of the ego vehicle. To place sensors more precisely, you can
disable snapping options. In the bottom-left corner of the sensor canvas, click the
Configure the Sensor Canvas button .

By default, the camera detects only actors and not lanes. To enable lane detections, on
the Sensors tab in the left pane, expand the Detection Parameters section and set
Detection Type to Objects & Lanes. Then expand the Lane Settings section and
update the settings as needed.

Add Radar

Snap a radar sensor to the front-left wheel. Right-click the predefined sensor location for
the wheel and select Add Radar. By default, sensors added to the wheels are short
range.

Tilt the radar sensor toward the front of the car. Move your cursor over the coverage
area, then click and drag the angle marking.

4 Driving Scenario Generation and Sensor Models

4-12

 Build a Driving Scenario and Generate Synthetic Detections

4-13

Add an identical radar sensor to the front-right wheel. Right-click the sensor on the front-
left wheel and click Copy. Then right-click the predefined sensor location for the front-
right wheel and click Paste. The orientation of the copied sensor mirrors the orientation
of the sensor on the opposite wheel.

4 Driving Scenario Generation and Sensor Models

4-14

The camera and radar sensors now provide overlapping coverage of the front of the ego
vehicle.

Generate Sensor Detections
Run Scenario

To generate detections from the sensors, click Run. As the scenario runs, the Ego-
Centric View displays the scenario from the perspective of the ego vehicle. The Bird’s-
Eye Plot displays the detections.

 Build a Driving Scenario and Generate Synthetic Detections

4-15

To turn off certain types of detections, in the bottom-left corner of the bird's-eye plot,
click the Configure the Bird's-Eye Plot button .

By default, the scenario ends when the first actor stops. To have the scenario run for a set
time instead, from the app toolstrip, click Settings and change the stop condition.

Export Sensor Detections

To export the detections to the MATLAB workspace, from the app toolstrip, click Export
> Export Sensor Data. Name the workspace variable and click OK. The app saves the
sensor data as a structure containing the actor poses, object detections, and lane
detections at each time step.

To export a MATLAB function that generates the scenario and its detections, click Export
> Export MATLAB Function. The scenario is a drivingScenario object. The sensor
detections are generated by visionDetectionGenerator and
radarDetectionGenerator System objects. To adjust the parameters of the scenario,

4 Driving Scenario Generation and Sensor Models

4-16

you can update the code in the exported function directly. To generate new detections,
call the exported function.

Save Scenario
After you generate the detections, click Save to save the scenario file. In addition, you
can save the sensor models separately. You can also save the road and actor models into a
separate scenario file.

You can reopen this scenario file from within the app or by using this syntax at the
MATLAB command prompt:

drivingScenarioDesigner(scenarioFileName)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader
block to read the roads and actors from this file into your model. However, because the
block does not support reading in sensor data, the sensors you created are ignored. You
must instead create the sensors within your model, using blocks such as Radar Detection
Generator and Vision Detection Generator.

See Also
Apps
Driving Scenario Designer

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

Objects
drivingScenario | radarDetectionGenerator | visionDetectionGenerator

More About
• “Generate Synthetic Detections from a Prebuilt Driving Scenario” on page 4-18
• “Generate Synthetic Detections from a Euro NCAP Scenario” on page 4-40
• “Add OpenDRIVE Roads to Driving Scenario” on page 4-60
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 4-72
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 4-78

 See Also

4-17

Generate Synthetic Detections from a Prebuilt Driving
Scenario

The Driving Scenario Designer app provides a library of prebuilt scenarios
representing common driving maneuvers. The app also includes scenarios representing
European New Car Assessment Programme (Euro NCAP®) test protocols. You can
generate synthetic vision and radar detections from these prebuilt scenarios. You can
then use these detections to test your vehicle controllers or sensor fusion algorithms.

Choose a Prebuilt Scenario
To get started, open the Driving Scenario Designer app. At the MATLAB command
prompt, enter drivingScenarioDesigner.

In the app, the prebuilt scenarios are stored as MAT-files and organized into folders. To
open a prebuilt scenario file, from the app toolstrip, select Open > Prebuilt Scenario.
Then select a prebuilt scenario from one of the folders.

• “Euro NCAP” on page 4-18
• “Intersections” on page 4-18
• “Turns” on page 4-23
• “U-Turns” on page 4-31

Euro NCAP

These scenarios represent Euro NCAP test protocols. The app includes scenarios for
testing autonomous emergency braking, emergency lane keeping, and lane keep assist
systems. For more details, see “Generate Synthetic Detections from a Euro NCAP
Scenario” on page 4-40.

Intersections

These scenarios involve common traffic patterns at four-way intersections and
roundabouts.

4 Driving Scenario Generation and Sensor Models

4-18

File Name Description
EgoVehicleGoesStraight_BicycleFro
mLeftGoesStraight_Collision.mat

The ego vehicle travels north and goes
straight through an intersection. A bicycle
coming from the left side of the intersection
goes straight and collides with the ego
vehicle.

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-19

File Name Description
EgoVehicleGoesStraight_Pedestrian
ToRightGoesStraight.mat

The ego vehicle travels north and goes
straight through an intersection. A
pedestrian in the lane to the right of the
ego vehicle also travels north and goes
straight through the intersection. The
pedestrian travels at a slower pace than the
ego vehicle.

4 Driving Scenario Generation and Sensor Models

4-20

File Name Description
EgoVehicleGoesStraight_VehicleFro
mLeftGoesStraight.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
coming from the left side of the intersection
also goes straight and crosses through the
intersection first.

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-21

File Name Description
EgoVehicleGoesStraight_VehicleFro
mRightGoesStraight.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
coming from the right side of the
intersection also goes straight and crosses
through the intersection first.

4 Driving Scenario Generation and Sensor Models

4-22

File Name Description
Roundabout.mat The ego vehicle travels north and crosses

the path of a pedestrian while entering a
roundabout. The ego vehicle then passes a
truck as both vehicles drive through the
roundabout.

Turns

These scenarios involve turns at four-way intersections.

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-23

File Name Description
EgoVehicleGoesStraight_VehicleFro
mLeftTurnsLeft.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
coming from the left side of the intersection
turns left and ends up in front of the ego
vehicle.

4 Driving Scenario Generation and Sensor Models

4-24

File Name Description
EgoVehicleGoesStraight_VehicleFro
mRightTurnsRight.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
coming from the right side of the
intersection turns right and ends up in front
of the ego vehicle.

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-25

File Name Description
EgoVehicleGoesStraight_VehicleInF
rontTurnsLeft.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
in front of the ego vehicle turns left at the
intersection.

4 Driving Scenario Generation and Sensor Models

4-26

File Name Description
EgoVehicleGoesStraight_VehicleInF
rontTurnsRight.mat

The ego vehicle travels north and goes
straight through an intersection. A vehicle
in front of the ego vehicle turns right at the
intersection.

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-27

File Name Description
EgoVehicleTurnsLeft_PedestrianFro
mLeftGoesStraight.mat

The ego vehicle travels north and turns left
at an intersection. A pedestrian coming
from the left side of the intersection goes
straight. The ego vehicle completes its turn
before the pedestrian crosses the
intersection.

4 Driving Scenario Generation and Sensor Models

4-28

File Name Description
EgoVehicleTurnsLeft_PedestrianInO
ppLaneGoesStraight.mat

The ego vehicle travels north and turns left
at an intersection. A pedestrian in the
opposite lane goes straight through the
intersection. The ego vehicle completes its
turn before the pedestrian crosses the
intersection.

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-29

File Name Description
EgoVehicleTurnsLeft_VehicleInFron
tGoesStraight.mat

The ego vehicle travels north and turns left
at an intersection. A vehicle in front of the
ego vehicle goes straight through the
intersection.

4 Driving Scenario Generation and Sensor Models

4-30

File Name Description
EgoVehicleTurnsRight_VehicleInFro
ntGoesStraight.mat

The ego vehicle travels north and turns
right at an intersection. A vehicle in front of
the ego vehicle goes straight through the
intersection.

U-Turns

These scenarios involve U-turns at four-way intersections.

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-31

File Name Description
EgoVehicleGoesStraight_VehicleInOpp
LaneMakesUTurn.mat

The ego vehicle travels north and goes
straight through an intersection. A
vehicle in the opposite lane makes a U-
turn. The ego vehicle ends up behind the
vehicle.

4 Driving Scenario Generation and Sensor Models

4-32

File Name Description
EgoVehicleMakesUTurn_PedestrianFrom
RightGoesStraight.mat

The ego vehicle travels north and makes
a U-turn at an intersection. A pedestrian
coming from the right side of the
intersection goes straight and crosses
the path of the U-turn.

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-33

File Name Description
EgoVehicleMakesUTurn_VehicleInOppLa
neGoesStraight.mat

The ego vehicle travels north and makes
a U-turn at an intersection. A vehicle
traveling south in the opposite lane goes
straight and crosses the path of the U-
turn.

4 Driving Scenario Generation and Sensor Models

4-34

File Name Description
EgoVehicleTurnsLeft_Vehicle1MakesUT
urn_Vehicle2GoesStraight.mat

The ego vehicle travels north and turns
left at an intersection. A vehicle in front
of the ego vehicle makes a U-turn at the
intersection. A second vehicle, a truck,
comes from the right side of the
intersection and goes in front of the ego
vehicle.

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-35

File Name Description
EgoVehicleTurnsLeft_VehicleFromLeft
MakesUTurn.mat

The ego vehicle travels north and turns
left at an intersection. A vehicle coming
from the left side of the intersection
makes a U-turn. The ego vehicle ends up
behind the vehicle.

4 Driving Scenario Generation and Sensor Models

4-36

File Name Description
EgoVehicleTurnsRight_VehicleFromRig
htMakesUTurn.mat

The ego vehicle travels north and turns
right at an intersection. A vehicle coming
from the right side of the intersection
makes a U-turn. The ego vehicle ends up
behind the vehicle.

Modify Scenario
After you choose a scenario, you can modify the parameters of the roads and actors. For
example, from the Actors tab on the left, you can change the position or velocity of the
ego vehicle or other actors. From the Roads tab, you can change the width of the lanes or
the type of lane markings.

You can also add or modify sensors. For example, from the Sensors tab, you can change
the detection parameters or the positions of the sensors. By default, in Euro NCAP

 Generate Synthetic Detections from a Prebuilt Driving Scenario

4-37

scenarios, the ego vehicle does not contain sensors. All other prebuilt scenarios have at
least one front-facing camera or radar sensor, set to detect lanes and objects.

Generate Synthetic Detections
To generate detections from the sensors, from the app toolstrip, click Run. As the
scenario runs, the Ego-Centric View displays the scenario from the perspective of the
ego vehicle. The Bird’s-Eye Plot displays the detections.

Export the detections.

• To export the detections to the MATLAB workspace, from the app toolstrip, click
Export > Export Sensor Data. Name the workspace variable and click OK.

4 Driving Scenario Generation and Sensor Models

4-38

• To export a MATLAB function that generates the scenario and its detections, click
Export > Export MATLAB Function. The scenario is a drivingScenario object.
The sensor detections are generated by visionDetectionGenerator and
radarDetectionGenerator System objects. To adjust the parameters of the
scenario, you can update the code in the exported function directly. To generate new
detections, call the exported function.

Save Scenario
Because prebuilt scenarios are read-only, save a copy of the driving scenario to a new
folder. From the app toolstrip, select Save > Scenario File As to save the scenario file.

You can reopen this scenario file from within the app or by using this syntax at the
MATLAB command prompt:

drivingScenarioDesigner(scenarioFileName)

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader
block to read the roads and actors from this file into your model. However, because the
block does not support reading in sensor data, the sensor you created is ignored. You
must instead create the sensors within your model, using blocks such as Radar Detection
Generator and Vision Detection Generator.

See Also
Apps
Driving Scenario Designer | Radar Detection Generator | Vision Detection Generator

Classes
drivingScenario | radarDetectionGenerator | visionDetectionGenerator

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 4-2
• “Generate Synthetic Detections from a Euro NCAP Scenario” on page 4-40
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 4-72
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 4-78

 See Also

4-39

Generate Synthetic Detections from a Euro NCAP
Scenario

The Driving Scenario Designer app provides a library of prebuilt scenarios
representing European New Car Assessment Programme (Euro NCAP) test protocols. The
app includes scenarios for testing autonomous emergency braking (AEB), emergency lane
keeping (ELK), and lane keep assist (LKA) systems.

Choose a Euro NCAP Scenario
To get started, open the Driving Scenario Designer app. At the MATLAB command
prompt, enter drivingScenarioDesigner.

In the app, the Euro NCAP scenarios are stored as MAT-files and organized into folders.
To open a Euro NCAP file, from the app toolstrip, select Open > Prebuilt Scenario. The
PrebuiltScenarios folder opens, which includes subfolders for all prebuilt scenarios
available in the app (see also “Generate Synthetic Detections from a Prebuilt Driving
Scenario” on page 4-18).

Double-click the EuroNCAP folder, and then choose a Euro NCAP scenario from one of
these subfolders.

• “Autonomous Emergency Braking” on page 4-40
• “Emergency Lane Keeping” on page 4-46
• “Lane Keep Assist” on page 4-50

Autonomous Emergency Braking

These scenarios are designed to test autonomous emergency braking (AEB) systems. AEB
systems warn drivers of impending collisions and automatically apply brakes to prevent
collisions or reduce the impact of collisions. Some AEB systems prepare the vehicle and
restraint systems for impact.

The table lists a subset of the available AEB scenarios. Other AEB scenarios in the folder
vary the points of collision, the amount of overlap between vehicles, and the initial gap
between vehicles.

4 Driving Scenario Generation and Sensor Models

4-40

File Name Description
AEB_Bicyclist_Longitudinal_25widt
h.mat

The ego vehicle collides with the bicyclist
that is in front of it. Before the collision, the
bicyclist and ego vehicle are traveling in
the same direction along the longitudinal
axis. At collision time, the bicycle is 25% of
the way across the width of the ego vehicle.

 Generate Synthetic Detections from a Euro NCAP Scenario

4-41

File Name Description
AEB_CCRb_2_initialGap_12m.mat A car-to-car rear braking (CCRb) scenario,

where the ego vehicle rear-ends a braking
vehicle. The braking vehicle begins to
decelerate at 2 m/s2. The initial gap
between the ego vehicle and the braking
vehicle is 12 m.

4 Driving Scenario Generation and Sensor Models

4-42

File Name Description
AEB_CCRm_50overlap.mat A car-to-car rear moving (CCRm) scenario,

where the ego vehicle rear-ends a moving
vehicle. At collision time, the ego vehicle
overlaps with 50% of the width of the
moving vehicle.

 Generate Synthetic Detections from a Euro NCAP Scenario

4-43

File Name Description
AEB_CCRs_-75overlap.mat A car-to-car rear stationary (CCRs)

scenario, where the ego vehicle rear-ends a
stationary vehicle. At collision time, the ego
vehicle overlaps with –75% of the width of
the stationary vehicle. When the ego
vehicle is to the left of the other vehicle, the
percent overlap is negative.

4 Driving Scenario Generation and Sensor Models

4-44

File Name Description
AEB_Pedestrian_Farside_50width.ma
t

The ego vehicle collides with a pedestrian
who is traveling from the left side of the
road, which Euro NCAP test protocols refer
to as the far side. These protocols assume
that vehicles travel on the right side of the
road. Therefore, the left side of the road is
the side farthest from the ego vehicle. At
collision time, the pedestrian is 50% of the
way across the width of the ego vehicle.

 Generate Synthetic Detections from a Euro NCAP Scenario

4-45

File Name Description
AEB_PedestrianChild_Nearside_50wi
dth.mat

The ego vehicle collides with a pedestrian
who is traveling from the right side of the
road, which Euro NCAP test protocols refer
to as the near side. These protocols assume
that vehicles travel on the right side of the
road. Therefore, the right side of the road is
the side nearest to the ego vehicle. At
collision time, the pedestrian is 50% of the
way across the width of the ego vehicle.

Emergency Lane Keeping

These scenarios are designed to test emergency lane keeping (ELK) systems. ELK
systems prevent collisions by warning drivers of impending, unintentional lane
departures.

4 Driving Scenario Generation and Sensor Models

4-46

The table lists a subset of the available ELK scenarios. Other ELK scenarios in the folder
vary the lateral velocity of the ego vehicle and the lane marking types.

File Name Description
ELK_FasterOvertakingVeh_Intent_Vl
at_0.5.mat

The ego vehicle intentionally changes lanes
and collides with a faster, overtaking
vehicle that is in the other lane. The ego
vehicle travels at a lateral velocity of 0.5
m/s.

 Generate Synthetic Detections from a Euro NCAP Scenario

4-47

File Name Description
ELK_OncomingVeh_Vlat_0.3.mat The ego vehicle unintentionally changes

lanes and collides with an oncoming vehicle
that is in the other lane. The ego vehicle
travels at a lateral velocity of 0.3 m/s.

4 Driving Scenario Generation and Sensor Models

4-48

File Name Description
ELK_OvertakingVeh_Unintent_Vlat_0
.3.mat

The ego vehicle unintentionally changes
lanes, overtakes a vehicle in the other lane,
and collides with that vehicle. The ego
vehicle travels at a lateral velocity of 0.3
m/s.

 Generate Synthetic Detections from a Euro NCAP Scenario

4-49

File Name Description
ELK_RoadEdge_NoBndry_Vlat_0.2.mat The ego vehicle unintentionally changes

lanes and ends up on the road edge. The
road edge has no lane boundary markings.
The ego vehicle travels at a lateral velocity
of 0.2 m/s.

Lane Keep Assist

These scenarios are designed to test lane keep assist (LKA) systems. LKA systems detect
unintentional lane departures and automatically adjust the steering angle of the vehicle to
stay within the lane boundaries.

The table lists a subset of the available LKA scenarios. Other LKA scenarios in the folder
vary the lateral velocity of the ego vehicle and the lane marking types.

4 Driving Scenario Generation and Sensor Models

4-50

File Name Description
LKA_DashedLine_Solid_Left_Vlat_0.
5.mat

The ego vehicle unintentionally departs
from a lane that is dashed on the left and
solid on the right. The car departs the lane
from the left (dashed) side, traveling at a
lateral velocity of 0.5 m/s.

 Generate Synthetic Detections from a Euro NCAP Scenario

4-51

File Name Description
LKA_DashedLine_Unmarked_Right_Vla
t_0.5.mat

The ego vehicle unintentionally departs
from a lane that is dashed on the right and
unmarked on the left. The car departs the
lane from the right (dashed) side, traveling
at a lateral velocity of 0.5 m/s.

4 Driving Scenario Generation and Sensor Models

4-52

File Name Description
LKA_RoadEdge_NoBndry_Vlat_0.5.mat The ego vehicle unintentionally departs

from a lane and ends up on the road edge.
The road edge has no lane boundary
markings. The car travels at a lateral
velocity of 0.5 m/s.

 Generate Synthetic Detections from a Euro NCAP Scenario

4-53

File Name Description
LKA_RoadEdge_NoMarkings_Vlat_0.5.
mat

The ego vehicle unintentionally departs
from a lane and ends up on the road edge.
The road has no lane markings. The car
travels at a lateral velocity of 0.5 m/s.

4 Driving Scenario Generation and Sensor Models

4-54

File Name Description
LKA_SolidLine_Dashed_Left_Vlat_0.
5.mat

The ego vehicle unintentionally departs
from a lane that is solid on the left and
dashed on the right. The car departs the
lane from the left (solid) side, traveling at a
lateral velocity of 0.5 m/s.

 Generate Synthetic Detections from a Euro NCAP Scenario

4-55

File Name Description
LKA_SolidLine_Unmarked_Right_Vlat
_0.5.mat

The ego vehicle unintentionally departs
from a lane that is a solid on the right and
unmarked on the left. The car departs the
lane from the right (solid) side, traveling at
a lateral velocity of 0.5 m/s.

Modify Scenario
By default, in Euro NCAP scenarios, the ego vehicle does not contain sensors. If you are
testing a vehicle sensor, from the app toolstrip, click Add Camera or Add Radar to add a
sensor to the ego vehicle. Then, on the Sensor tab, adjust the parameters of the sensors
to match your sensor model. If you are testing a camera sensor, to enable the camera to
detect lanes, expand the Detection Parameters section, and set Detection Type to
Lanes & Objects.

You can also adjust the parameters of the roads and actors in the scenario. For example,
from the Actors tab on the left, you can change the position or velocity of the ego vehicle

4 Driving Scenario Generation and Sensor Models

4-56

or other actors. From the Roads tab, you can change the width of lanes or the type of
lane markings.

Generate Synthetic Detections
To generate detections from any added sensors, click Run. As the scenario runs, the Ego-
Centric View displays the scenario from the perspective of the ego vehicle. The Bird’s-
Eye Plot displays the detections.

Export the detections.

• To export the detections to the MATLAB workspace, from the app toolstrip, click
Export > Export Sensor Data. Name the workspace variable and click OK.

• To export a MATLAB function that generates the scenario and its detections, click
Export > Export MATLAB Function. The scenario is a drivingScenario object.

 Generate Synthetic Detections from a Euro NCAP Scenario

4-57

The sensor detections are generated by visionDetectionGenerator and
radarDetectionGenerator System objects. To adjust the parameters of the
scenario, you can update the code in the exported function directly. To generate new
detections, call the exported function.

Save Scenario
Because Euro NCAP scenarios are read-only, save a copy of the driving scenario to a new
folder. From the app toolstrip, select Save > Scenario File As to save the scenario file.

You can reopen this scenario file from within the app or by using the following syntax at
the MATLAB command prompt:

drivingScenarioDesigner(scenarioFileName)

You can modify one or more scenario parameters and save multiple variations of the same
scenario. For example, you can adjust the velocity of the ego vehicle or the type of lane
markings on the road. Then you can save an altered version of the scenario.

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader
block to read the roads and actors from this file into your model. However, because the
block does not support reading in sensor data, the sensor you created is ignored. You
must instead create the sensors within your model, using blocks such as Radar Detection
Generator and Vision Detection Generator.

References
[1] European New Car Assessment Programme. Euro NCAP Assessment Protocol - SA.

Version 8.0.2. January 2018.

[2] European New Car Assessment Programme. Euro NCAP AEB C2C Test Protocol.
Version 2.0.1. January 2018.

[3] European New Car Assessment Programme. Euro NCAP LSS Test Protocol. Version
2.0.1. January 2018.

See Also
Apps
Driving Scenario Designer

4 Driving Scenario Generation and Sensor Models

4-58

Blocks
Radar Detection Generator | Scenario Reader | Vision Detection Generator

Objects
drivingScenario | radarDetectionGenerator | visionDetectionGenerator

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 4-2
• “Generate Synthetic Detections from a Prebuilt Driving Scenario” on page 4-18
• “Autonomous Emergency Braking with Sensor Fusion”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 4-72
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 4-78

External Websites
• Euro NCAP Safety Assist Protocols

 See Also

4-59

https://www.euroncap.com/en/for-engineers/protocols/safety-assist/

Add OpenDRIVE Roads to Driving Scenario
OpenDRIVE [1] is an open file format that enables you to specify large and complex road
networks. Using the Driving Scenario Designer app, you can import roads and lanes
from an OpenDRIVE file into a driving scenario. You can then add actors and sensors to
the scenario and generate synthetic lane and object detections for testing your driving
algorithms developed in MATLAB. Alternatively, to test driving algorithms developed in
Simulink, you can use a Scenario Reader block to read the road network and actors into a
model.

To import OpenDRIVE roads and lanes into a drivingScenario object instead of into
the app, use the roadNetwork function.

Import OpenDRIVE File
To get started, open the Driving Scenario Designer app. At the MATLAB command
prompt, enter drivingScenarioDesigner.

To import an OpenDRIVE file, from the app toolstrip, select Open > OpenDRIVE Road
Network. The file you select must be a valid OpenDRIVE file of type .xodr or .xml. In
addition, the file must conform with OpenDRIVE format specification version 1.4H.

From your MATLAB root folder, navigate to and open this file:

matlabroot/toolbox/driving/drivingdata/intersection.xodr

Because you cannot import an OpenDRIVE road network into an existing scenario file, the
app prompts you to save your current driving scenario.

The Scenario Canvas of the app displays the imported road network.

4 Driving Scenario Generation and Sensor Models

4-60

The roads in this network are thousands of meters long. You can zoom in (press Ctrl
+Plus) on the road to inspect it more closely.

Inspect Roads
The imported road network shows a pair of two-lane roads intersecting with a single two-
lane road.

 Add OpenDRIVE Roads to Driving Scenario

4-61

Verify that the road network imported as expected, keeping in mind the following
limitations and behaviors within the app.

OpenDRIVE Import Limitations

The Driving Scenario Designer app does not support all components of the OpenDRIVE
specification.

• You can import only lanes and roads. The import of road objects and traffic signals is
not supported.

• OpenDRIVE files containing large road networks can take up to several minutes to
load. In addition, these road networks can cause slow interactions on the app canvas.

4 Driving Scenario Generation and Sensor Models

4-62

Examples of large road networks include ones that model the roads of a city or ones
with roads that are thousands of meters long.

• Lanes with variable widths are not supported. The width is set to the highest width
found within that lane. For example, if a lane has a width that varies from 2 meters to
4 meters, the app sets the lane width to 4 meters throughout.

• Roads with multiple lane marking styles are not supported. The app applies the first
found marking style to all lanes in the road. For example, if a road has Dashed and
Solid lane markings, the app applies Dashed lane markings throughout.

• Lane marking styles Bott Dots, Curbs, and Grass are not supported. Lanes with
these marking styles are imported as unmarked.

Road Orientation

In the Driving Scenario Designer app, the orientation of roads can differ from the
orientation of roads in other tools that display OpenDRIVE roads. The table shows this
difference in orientation between the app and the OpenDRIVE ODR Viewer.

 Add OpenDRIVE Roads to Driving Scenario

4-63

Driving Scenario Designer OpenDRIVE ODR Viewer

In the OpenDRIVE ODR viewer, the X-axis runs along the bottom of the viewer, and the Y-
axis runs along the left side of the viewer.

In the Driving Scenario Designer app, the Y-axis runs along the bottom of the canvas,
and the X-axis runs along the left side of the canvas. This world coordinate system in the
app aligns with the vehicle coordinate system (XV,YV) used by vehicles in the driving
scenario, where:

• The XV-axis (longitudinal axis) points forward from a vehicle in the scenario.

4 Driving Scenario Generation and Sensor Models

4-64

• The YV-axis (lateral axis) points to the left of the vehicle, as viewed when facing
forward.

For more details about the coordinate systems, see “Coordinate Systems in Automated
Driving Toolbox” on page 1-2.

 Add OpenDRIVE Roads to Driving Scenario

4-65

Road Centers on Edges

In the Driving Scenario Designer app, the location and orientation of roads are defined
by road centers. When you create a road in the app, the road centers are always in the
middle of the road. When you import OpenDRIVE road networks into the app, however,
some roads have their road centers on the road edges. This behavior occurs when the
OpenDRIVE roads are explicitly specified as being right lanes or left lanes.

Consider the divided highway in the imported OpenDRIVE file.

• The lanes on the right side of the highway have their road centers on the right edge.
• The lanes on the left side of the highway have their road centers on the left edge.

4 Driving Scenario Generation and Sensor Models

4-66

Add Actors and Sensors to Scenario
You can add actors and sensors to a scenario containing OpenDRIVE roads. However, you
cannot add other roads to the scenario. If a scenario contains an OpenDRIVE road
network, the Add Road button in the app toolstrip is disabled. In addition, you cannot
import additional OpenDRIVE road networks into a scenario.

Add an ego vehicle to the scenario by right-clicking one of the roads in the canvas and
selecting Add Car. To specify the trajectory of the car, right-click the car in the canvas,
select Add Waypoints, and add waypoints along the road for the car to pass through.
After you add the last waypoint along the road, press Enter. The car autorotates in the
direction of the first waypoint.

 Add OpenDRIVE Roads to Driving Scenario

4-67

Add a camera sensor to the ego vehicle. From the app toolstrip, click Add Camera. Then,
on the sensor canvas, add the camera to the predefined location representing the front
window of the car.

Configure the camera to detect lanes. In the left pane, on the Sensors tab, expand the
Detection Parameters section. Then, set the Detection Type parameter to Lanes.

Generate Synthetic Detections
To generate lane detections from the camera, from the app toolstrip, click Run. As the
scenario runs, the Ego-Centric View displays the scenario from the perspective of the
ego vehicle. The Bird’s-Eye Plot displays the left-lane and right-lane boundaries of the
ego vehicle.

4 Driving Scenario Generation and Sensor Models

4-68

To export the detections to the MATLAB workspace, from the app toolstrip, click Export
> Export Sensor Data. Name the workspace variable and click OK.

The Export > Export MATLAB Function option is disabled. If a scenario contains
OpenDRIVE roads, then you cannot export a MATLAB function that generates the
scenario and its detections.

Save Scenario
After you generate the detections, click Save to save the scenario file. In addition, you
can save the sensor models separately. You can also save the road and actor models into a
separate scenario file.

You can reopen this scenario file from within the app or by using this syntax at the
MATLAB command prompt:

 Add OpenDRIVE Roads to Driving Scenario

4-69

drivingScenarioDesigner(scenarioFileName)

When you reopen this file, the Add Road button remains disabled.

If you are developing a driving algorithm in Simulink, you can use a Scenario Reader
block to read the road network and actors from this file into your model. However,
because the Scenario Reader block does not support reading in sensor data, the sensor
you created is ignored. You must instead create the sensors within your model, using
blocks such as Radar Detection Generator and Vision Detection Generator.

Scenario files containing large OpenDRIVE road networks can take up to several minutes
to read into models.

References
[1] Dupuis, Marius, et al. OpenDRIVE Format Specification. Revision 1.4, Issue H,

Document No. VI2014.106. Bad Aibling, Germany: VIRES Simulationstechnologie
GmbH, November 4, 2015.

See Also
Apps
Driving Scenario Designer

Blocks
Scenario Reader

Objects
drivingScenario

Functions
roadNetwork

More About
• “Build a Driving Scenario and Generate Synthetic Detections” on page 4-2
• “Generate Synthetic Detections from a Prebuilt Driving Scenario” on page 4-18
• “Coordinate Systems in Automated Driving Toolbox” on page 1-2

4 Driving Scenario Generation and Sensor Models

4-70

See Also

External Websites
• opendrive.org

 See Also

4-71

http://opendrive.org/

Test Open-Loop ADAS Algorithm Using Driving Scenario
This example shows how to test an open-loop ADAS (advanced driver assistance system)
algorithm in Simulink®. To test the scenario, you use a driving scenario that was saved
from the Driving Scenario Designer app. In this example, you read in a scenario using a
Scenario Reader block, and then visually verify the performance of a simple sensor fusion
algorithm on the Bird's-Eye Scope.

Before beginning this example, add the example file folder to the MATLAB® search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Inspect Driving Scenario

This example uses a driving scenario that is based on one of the prebuilt scenarios that
you can access through the Driving Scenario Designer app. For more details on these
scenarios, see “Generate Synthetic Detections from a Prebuilt Driving Scenario” on page
4-18.

Open the scenario file in the app.

drivingScenarioDesigner('LeftTurnScenario.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle travels north and
goes straight through an intersection. Meanwhile, a vehicle coming from the left side of
the intersection turns left and ends up in front of the ego vehicle.

4 Driving Scenario Generation and Sensor Models

4-72

In the model used in this example, you generate detections of the other vehicle and the
lane boundaries of the ego vehicle. Although this scenario includes a vision sensor defined
in the app, the Scenario Reader block does not support reading sensor data from
scenarios. Therefore, sensors must be defined in the model. If you read a scenario file
containing sensor data, the block ignores this sensor data.

Inspect Model

In the model, a Scenario Reader block reads the actors and roads from the scenario file
and outputs the non-ego actors and lane boundaries. Open the model.

 Test Open-Loop ADAS Algorithm Using Driving Scenario

4-73

open_system('OpenLoopWithScenarios.slx')

In the Scenario Reader block, the Driving scenario file name parameter specifies the
name of the scenario file. You can specify a scenario file that is on the MATLAB search
path, such as the scenario file used in this example, or the full path to a scenario file.

The Scenario Reader block outputs the poses of the non-ego actors in the scenario and
the left-lane and right-lane boundaries of the ego vehicle. To output all lane boundaries of
the road on which the ego vehicle is traveling, select the corresponding option for the
Lane boundaries to output parameter.

The actors are passed to a Radar Detection Generator and a Vision Detection Generator
block, and the lane boundaries are passed to the Vision Detection Generator block. These
sensor blocks produce synthetic detections from the scenario. The outputs are in vehicle
coordinates, where:

• The X-axis points forward from the ego vehicle.
• The Y-axis points to the left of the ego vehicle.
• The origin is located at the center of the rear axle of the ego vehicle.

If a scenario has multiple ego vehicles, in the Scenario Reader block, set the Coordinate
system of outputs parameter to World coordinates instead of Vehicle
Coordinates. In the world coordinate system, the actors and lane boundaries are in the
world coordinates of the driving scenario. The Bird's-Eye Scope does not support
visualization of world coordinates.

In this model, the Scenario Reader block reads the ego vehicle from the scenario file (the
Source of ego vehicle parameter is set to Scenario file). Because this algorithm is
open-loop, the ego vehicle behavior does not change as the simulation advances.

4 Driving Scenario Generation and Sensor Models

4-74

Therefore, the Source of ego vehicle parameter is set to Scenario file, and the
block reads the predefined ego vehicle pose and trajectory from the scenario. For vehicle
controllers and other closed-loop algorithms, set the Source of ego vehicle parameter to
Input port. With this option, you specify an ego vehicle that is defined in the model as
an input to the Scenario Reader block. For an example, see “Test Closed-Loop ADAS
Algorithm Using Driving Scenario” on page 4-78.

Visually Verify Algorithm

To visualize the scenario and the object and lane boundary detections, use the Bird's-Eye
Scope. From the Simulink model toolbar, click the Bird's-Eye Scope button. Then, click
Find Signals, and run the simulation. The vision sensor correctly generates detections
for the non-ego actor and the lane boundaries.

 Test Open-Loop ADAS Algorithm Using Driving Scenario

4-75

Update Simulation Settings

This model uses the default simulation stop time of 10 seconds. However, because the
scenario is only about 5 seconds long, the simulation continues to run in the Bird's-Eye
Scope even after the scenario has ended. To synchronize the simulation and scenario stop
times, in the Simulink model toolbar, set the simulation stop time to 5.2 seconds, which is
the exact stop time of the app scenario. After you run the simulation, the app displays this
value in the bottom-right corner of the scenario canvas.

4 Driving Scenario Generation and Sensor Models

4-76

If the simulation runs too fast in the Bird's-Eye Scope, you can slow down the simulation
by using simulation pacing. From the Simulink model toolbar, select Simulation >
Pacing Options. Select the Enable pacing to slow down simulation check box and
decrease the simulation time to slightly less than 1 second per wall-clock second, such as
0.8 seconds. Then, rerun the simulation in the Bird's-Eye Scope.

When you are done with this example, remove the example file folder from the MATLAB
search path.

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Bird's-Eye Scope | Driving Scenario Designer | Radar Detection Generator | Scenario
Reader | Vision Detection Generator

More About
• “Sensor Fusion Using Synthetic Radar and Vision Data in Simulink”
• “Test Closed-Loop ADAS Algorithm Using Driving Scenario” on page 4-78

 See Also

4-77

Test Closed-Loop ADAS Algorithm Using Driving
Scenario

This model shows how to test a closed-loop ADAS (advanced driver assistance system)
algorithm in Simulink®. To test the scenario, you use a driving scenario that was saved
from the Driving Scenario Designer app. In this model, you read in a scenario using a
Scenario Reader block, and then visually verify the performance of the algorithm, an
autonomous emergency braking (AEB) system, on the Bird's-Eye Scope.

Before beginning this example, add the example file folder to the MATLAB® search path.

addpath(genpath(fullfile(matlabroot,'examples','driving')))

Inspect Driving Scenario

This example uses a driving scenario that is based on one of the prebuilt Euro NCAP test
protocol scenarios that you can access through the Driving Scenario Designer app. For
more details on these scenarios, see “Generate Synthetic Detections from a Euro NCAP
Scenario” on page 4-40.

Open the scenario file in the app.

drivingScenarioDesigner('AEB_PedestrianChild_Nearside_50width_overrun.mat')

Click Run to simulate the scenario. In this scenario, the ego vehicle collides with a
pedestrian child who is crossing the street.

4 Driving Scenario Generation and Sensor Models

4-78

In the model used in this example, you use an AEB sensor fusion algorithm to detect the
pedestrian child and test whether the ego vehicle brakes in time to avoid a collision.

Inspect Model

The model implements the AEB algorithm described in the “Autonomous Emergency
Braking with Sensor Fusion” example. Open the model.

open_system('AEBTestBenchExample')

 Test Closed-Loop ADAS Algorithm Using Driving Scenario

4-79

A Scenario Reader block reads the actors and roads from the specified scenario file and
outputs the non-ego actors. This block is located in the Vehicle Environment > Actors
and Sensor Simulation subsystem. Open this subsystem.

open_system('AEBTestBenchExample/Vehicle and Environment/Actors and Sensor Simulation')

4 Driving Scenario Generation and Sensor Models

4-80

In the Scenario Reader block, the Driving scenario file name parameter specifies the
name of the scenario file. You can specify a scenario file that is on the MATLAB search
path, such as the scenario file used in this example, or the full path to a scenario file.

The Scenario Reader block outputs the poses of the non-ego actors in the scenario. These
poses are passed to vision and radar sensors, whose detections are used to determine the
behavior of the AEB controller.

The actor poses are output in vehicle coordinates, where:

• The X-axis points forward from the ego vehicle.
• The Y-axis points to the left of the ego vehicle.
• The origin is located at the center of the rear axle of the ego vehicle.

If a scenario has multiple ego vehicles, in the Scenario Reader block, set the Coordinate
system of outputs parameter to World coordinates instead of Vehicle
Coordinates. In the world coordinate system, the actors and lane boundaries are in the
world coordinates of the driving scenario. The Bird's-Eye Scope does not support
visualization of world coordinates.

 Test Closed-Loop ADAS Algorithm Using Driving Scenario

4-81

Although this scenario includes a predefined ego vehicle, the Scenario Reader block is
configured to ignore this ego vehicle definition. Instead, the ego vehicle is defined in the
model and specified as an input to the Scenario Reader block (the Source of ego vehicle
parameter is set to Input port). As the simulation advances, the AEB algorithm
determines the pose and trajectory of the ego vehicle. If you are developing an open-loop
algorithm, where the ego vehicle is predefined in the driving scenario, set the Source of
ego vehicle parameter to Scenario file. For an example, see “Test Open-Loop ADAS
Algorithm Using Driving Scenario” on page 4-72.

Visually Verify Algorithm

To visualize the scenario, use the Bird's-Eye Scope. From the Simulink model toolbar,
click the Bird's-Eye Scope button. Then, click Find Signals, and run the simulation. With
the AEB algorithm, the ego vehicle brakes in time to avoid a collision.

4 Driving Scenario Generation and Sensor Models

4-82

When you are done verifying the algorithm, remove the example file folder from the
MATLAB search path.

 Test Closed-Loop ADAS Algorithm Using Driving Scenario

4-83

rmpath(genpath(fullfile(matlabroot,'examples','driving')))

See Also
Bird's-Eye Scope | Driving Scenario Designer | Radar Detection Generator | Scenario
Reader | Vision Detection Generator

More About
• “Autonomous Emergency Braking with Sensor Fusion”
• “Lateral Control Tutorial”
• “Test Open-Loop ADAS Algorithm Using Driving Scenario” on page 4-72

4 Driving Scenario Generation and Sensor Models

4-84

Planning, Mapping, and Control

• “Access HERE HD Live Map Data” on page 5-2
• “Enter HERE HD Live Map Credentials” on page 5-9
• “Create Configuration for HERE HD Live Map Reader” on page 5-11
• “Create HERE HD Live Map Reader” on page 5-17
• “Read and Visualize Data Using HERE HD Live Map Reader” on page 5-21
• “HERE HD Live Map Layers” on page 5-34
• “Control Vehicle Velocity” on page 5-40

5

Access HERE HD Live Map Data
HERE HD Live Map1 (HERE HDLM), developed by HERE Technologies, is a cloud-based
web service that enables you to access highly accurate, continuously updated map data.
The data is composed of tiled map layers containing information such as the topology and
geometry of roads and lanes, road-level attributes, and lane-level attributes. This data is
suitable for a variety of ADAS applications, including localization, scenario generation,
navigation, and path planning.

Using Automated Driving Toolbox functions and objects, you can create a HERE HDLM
reader, read map data from the HERE HDLM web service, and then visualize the data
from certain layers.

Step 1: Enter Credentials
Before you can use the HERE HDLM web service, you must enter the credentials you
obtained from your agreement with HERE Technologies. To set up your credentials, use
the hereHDLMCredentials function.

hereHDLMCredentials setup

1. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.

5 Planning, Mapping, and Control

5-2

https://www.here.com

For more details, see “Enter HERE HD Live Map Credentials” on page 5-9.

Step 2: Create Reader Configuration
Optionally, to speed up performance, create a hereHDLMConfiguration object that
configures the reader to search for map data in only a specific catalog. These catalogs
correspond to various geographic regions. For example, create a configuration for the
North America region.

config = hereHDLMConfiguration('North America');

 Access HERE HD Live Map Data

5-3

For more details, see “Create Configuration for HERE HD Live Map Reader” on page 5-
11.

Step 3: Create Reader
Create a hereHDLMReader object and optionally specify the configuration. The reader
enables you to read HERE HDLM map data, which is stored is a series of layers, for
selected map tiles. You can select map tiles by map tile ID or by specifying the
coordinates of a driving route. For example, create a reader that reads tiled map layer
data for a driving route in North America.

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
reader = hereHDLMReader(route.latitude,route.longitude,'Configuration',config);

5 Planning, Mapping, and Control

5-4

For more details, see “Create HERE HD Live Map Reader” on page 5-17.

Step 4: Read and Visualize Data
Use the read function to read data for the selected map tiles. The map data is returned
as a series of layer objects. To plot map data for a selected layer, use the plot function.
For example, read and plot the topology geometry layer for the selected map tiles, and
overlay the driving route on the plot.

topology = read(reader,'TopologyGeometry');

 Access HERE HD Live Map Data

5-5

topology =

 2×1 TopologyGeometry array with properties:

 Data:
 HereTileId
 IntersectingLinkRefs
 LinksStartingInTile
 NodesInTile
 TileCenterHere2dCoordinate

 Metadata:
 Catalog
 CatalogVersion

plot(topology)
hold on
geoplot(lat,lon,'bo-','DisplayName','Route');
hold off

5 Planning, Mapping, and Control

5-6

For more details, see “Read and Visualize Data Using HERE HD Live Map Reader” on
page 5-21.

See Also
hereHDLMConfiguration | hereHDLMCredentials | hereHDLMReader | plot | read

More About
• “Enter HERE HD Live Map Credentials” on page 5-9

 See Also

5-7

• “Create Configuration for HERE HD Live Map Reader” on page 5-11
• “Create HERE HD Live Map Reader” on page 5-17
• “Read and Visualize Data Using HERE HD Live Map Reader” on page 5-21
• “HERE HD Live Map Layers” on page 5-34
• “Use HERE HD Live Map Data to Verify Lane Configurations”

External Websites
• HD Live Map Data Specification

5 Planning, Mapping, and Control

5-8

https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-intro.html

Enter HERE HD Live Map Credentials
To access the HERE HD Live Map2 (HERE HDLM) web service, valid HERE credentials
are required. You can obtain these credentials by entering into a separate agreement with
HERE Technologies. The first time that you use a HERE HDLM function or object in a
MATLAB session, a dialog box prompts you to enter these credentials.

Enter a valid App ID and App Code, and click OK. The credentials are now saved for the
rest of your MATLAB session on your machine. To save your credentials for future
MATLAB sessions on your machine, in the dialog box, select Save my credentials
between MATLAB sessions. These credentials remain saved until you delete them.

To change your credentials, or to set up your credentials before using a HERE HDLM
function or object such as hereHDLMReader or hereHDLMConfiguration, use the
hereHDLMCredentials function.

2. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.

 Enter HERE HD Live Map Credentials

5-9

https://www.here.com

hereHDLMCredentials setup

You can also use this function to later delete your saved credentials.

hereHDLMCredentials delete

After you enter your credentials, you can then configure your HERE HDLM reader to
search for map data in only a specific geographic region. See “Create Configuration for
HERE HD Live Map Reader” on page 5-11. Alternatively, you can create the reader
without specifying a configuration. See “Create HERE HD Live Map Reader” on page 5-
17.

See Also
hereHDLMConfiguration | hereHDLMCredentials | hereHDLMReader

More About
• “Create Configuration for HERE HD Live Map Reader” on page 5-11
• “Create HERE HD Live Map Reader” on page 5-17

5 Planning, Mapping, and Control

5-10

Create Configuration for HERE HD Live Map Reader
In the HERE HD Live Map3 (HERE HDLM) web service, map data is stored in a set of
databases called catalogs. Each catalog corresponds to a different geographic region
(North America, India, Western Europe, and so on). Previous versions of each catalog are
also available from the service.

By creating a hereHDLMConfiguration object, you can configure a HERE HDLM reader
to search for map data from only a specific catalog. These configurations speed up
performance of the reader, because the reader does not search unnecessary catalogs for

3. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.

 Create Configuration for HERE HD Live Map Reader

5-11

https://www.here.com

map data. You can also configure a reader to search from only a specific version of a
catalog.

Configuring a HERE HDLM reader using a hereHDLMConfiguration object is optional.
If you do not specify a configuration, by default, the reader searches for map tiles across
all catalogs and returns map data from the latest version of that catalog.

Create Configuration for Specific Catalog
Configuring a HERE HDLM reader to search only a specific catalog can speed up
performance.

Consider a driving route located in North America.

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
lat = route.latitude;
lon = route.longitude;
geoplot(lat,lon,'bo-');
geobasemap('streets')
title('Driving Route')

5 Planning, Mapping, and Control

5-12

Suppose you want to read map data for that route from the HERE HDLM service. You can
create a hereHDLMConfiguration object that configures a HERE HDLM reader to
search for that map data within only the North America catalog.

config = hereHDLMConfiguration('North America');

 Create Configuration for HERE HD Live Map Reader

5-13

If you do not specify such a configuration, by default, the reader searches all available
catalogs for this map data.

To configure a HERE HDLM reader for a specific catalog, you can specify either the
region name or catalog name. This table shows the HERE HDLM region names and
corresponding production catalog names.

Region Catalog
'Asia Pacific' 'here-hdmap-ext-apac-1'
'Eastern Europe' 'here-hdmap-ext-eeu-1'
'India' 'here-hdmap-ext-rn-1'
'Middle East And Africa' 'here-hdmap-ext-mea-1'

5 Planning, Mapping, and Control

5-14

Region Catalog
'North America' 'here-hdmap-ext-na-1'
'Oceania' 'here-hdmap-ext-au-1'
'South America' 'here-hdmap-ext-sam-1'
'Western Europe' 'here-hdmap-ext-weu-1'

Create Configuration for Specific Version
The HERE HDLM service also contains map data for previous versions of each catalog.
You can configure a reader to access map data from a specific catalog version.

For example, create a configuration object for the previous version of the Western Europe
catalog.

configLatest = hereHDLMConfiguration('Western Europe');
previousVersion = configLatest.CatalogVersion - 1;
configPrevious = hereHDLMConfiguration('WesternEurope',previousVersion);

The HERE HDLM service determines the availability of previous versions of the catalog. If
you specify a version of the catalog that is not available, then the
hereHDLMConfiguration object returns an error.

Configure Reader
To configure a HERE HDLM reader, specify the configuration object when you create the
hereHDLMReader object. This configuration is stored in the Configuration property of
the reader.

For example, create a HERE HDLM reader using the configuration and latitude-longitude
coordinates that you created in the “Create Configuration for Specific Catalog” on page 5-
12 section. Your catalog version might differ from the one shown here. This reader is
configured for the latest catalog version, but the HERE HDLM service is continually
updated and frequently produces new map versions.

reader = hereHDLMReader(lat,lon,'Configuration',config);
reader.Configuration

 hereHDLMConfiguration with properties:

 Create Configuration for HERE HD Live Map Reader

5-15

 Catalog: 'here-hdmap-ext-na-1'
 CatalogVersion: 2054

For details about creating HERE HDLM readers, see “Create HERE HD Live Map Reader”
on page 5-17.

See Also
hereHDLMConfiguration | hereHDLMReader

More About
• “Create HERE HD Live Map Reader” on page 5-17

5 Planning, Mapping, and Control

5-16

Create HERE HD Live Map Reader
A hereHDLMReader object reads HERE HD Live Map4 (HERE HDLM) data from a
selection of map tiles. By default, these map tiles are set to a zoom level of 14, which
corresponds to a rectangular area of about 5–10 square kilometers.

You select the map tiles from which to read data when you create a hereHDLMReader
object. You can specify the map tile IDs directly, or you can specify a driving route and
read data from the map tiles of that route.

Create Reader from Specified Driving Route
If you have a driving route stored as a vector of latitude-longitude coordinates, you can
use these coordinates to select map tiles from which to read data.

Load the latitude-longitude coordinates for a driving route in North America. For
reference, display the route on a geographic axes.

4. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.

 Create HERE HD Live Map Reader

5-17

https://www.here.com

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
lat = route.latitude;
lon = route.longitude;

geoplot(lat,lon,'bo-');
geobasemap('streets')
title('Driving Route')

Create a hereHDLMConfiguration object for reading data from only the North America
catalog. For more details about configuring HERE HDLM readers, see “Create
Configuration for HERE HD Live Map Reader” on page 5-11. If you have not previously
set up HERE HDLM credentials, a dialog box prompts you to enter them.

config = hereHDLMConfiguration('North America');

5 Planning, Mapping, and Control

5-18

Create a hereHDLMReader object using the specified driving route and configuration.

reader = hereHDLMReader(lat,lon,'Configuration',config);

This HERE HDLM reader enables you to read map data for the tiles that the driving route
is on. The map data is stored in a set of layers containing detailed information about
various aspects of the map. The reader supports reading data from the map layers for the
Road Centerline Model and HD Lane Model. For more details on the layers in these
models, see “HERE HD Live Map Layers” on page 5-34.

 Create HERE HD Live Map Reader

5-19

If you call the read function with the HERE HDLM reader, you can read the map tile data
for a specific layer. If the layer supports visualization, you can also plot the layer. For
more details, see “Read and Visualize Data Using HERE HD Live Map Reader” on page 5-
21.

Create Reader from Specified Map Tile IDs
If you know the IDs of the map tiles from which you want to read data, when you create a
hereHDLMReader object, you can specify the map tile IDs directly. Specify the map tile
IDs as an array of unsigned 32-bit integers.

Create a hereHDLMReader object using the map tile IDs and configuration from the
previous section.

tileIds = uint32([321884279 321884450]);
reader = hereHDLMReader(tileIds);

This reader is equivalent to the reader created in the previous section. The only
difference between these two readers is the method for selecting the map tiles from
which to read data.

To learn more about reading and plotting data from map tiles, see “Read and Visualize
Data Using HERE HD Live Map Reader” on page 5-21.

See Also
hereHDLMConfiguration | hereHDLMReader | read

More About
• “Read and Visualize Data Using HERE HD Live Map Reader” on page 5-21
• “HERE HD Live Map Layers” on page 5-34

5 Planning, Mapping, and Control

5-20

Read and Visualize Data Using HERE HD Live Map
Reader

You can read map tile data from the HERE HD Live Map5 (HERE HDLM) web service by
using a hereHDLMReader object and the read function. This data is composed of a series
of map layer objects. The diagram shows the layers available for map tiles corresponding
to a driving route in North America.

5. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.

 Read and Visualize Data Using HERE HD Live Map Reader

5-21

https://www.here.com

You can use this map layer data for a variety of automated driving applications. You can
also visualize certain layers by using the plot function.

Create Reader
To read map data using the read function, you must specify a hereHDLMReader object as
an input argument. This object specifies the map tiles from which you want to read data.

Create a hereHDLMReader object that can read data from the map tiles of a driving route
in North America. Configure the reader to read data from only the North America catalog

5 Planning, Mapping, and Control

5-22

by specifying a hereHDLMConfiguration object for the Configuration property of
the reader. If you have not previously entered HERE HDLM credentials, a dialog box
prompts you to enter them. For reference, display the driving route on a geographic axes.

route = load(fullfile(matlabroot,'examples','driving','geoSequenceNatickMA.mat'));
lat = route.latitude;
lon = route.longitude;
config = hereHDLMConfiguration('North America');
reader = hereHDLMReader(lat,lon,'Configuration',config);

geoplot(lat,lon,'bo-');
geobasemap('streets')
title('Driving Route')

 Read and Visualize Data Using HERE HD Live Map Reader

5-23

For more details about configuring a HERE HDLM reader, see “Create Configuration for
HERE HD Live Map Reader” on page 5-11. For more details about creating a reader, see
“Create HERE HD Live Map Reader” on page 5-17.

Read Map Layer Data
To read map layer data from the HERE HDLM web service, call the read function with
the reader you created in the previous section and the name of the map layer you want to
read. For example, read data from the layer containing the topology geometry of the road.
The data is returned as an array of map layer objects.

topology = read(reader,'TopologyGeometry')

topology =

 2×1 TopologyGeometry array with properties:

 Data:
 HereTileId
 IntersectingLinkRefs
 LinksStartingInTile
 NodesInTile
 TileCenterHere2dCoordinate

 Metadata:
 Catalog
 CatalogVersion

Each map layer object corresponds to a map tiles that you selected using the input
hereHDLMReader object. The IDs of these map tiles are stored in the TileIds property
of the HERE HDLM reader.

Inspect the properties of the map layer object for the first map tile. Your catalog version
might differ from the one shown here.

topology(1)

ans =

 TopologyGeometry with properties:

 Data:
 HereTileId: 321884279

5 Planning, Mapping, and Control

5-24

 IntersectingLinkRefs: [38×1 struct]
 LinksStartingInTile: [490×1 struct]
 NodesInTile: [336×1 struct]
 TileCenterHere2dCoordinate: [42.3083 -71.3782]

 Metadata:
 Catalog: 'here-hdmap-ext-na-1'
 CatalogVersion: 2066

The properties of the TopologyGeometry layer object correspond to valid HERE HDLM
fields for that layer. In these layer objects, the names of the layer fields are modified to fit
the MATLAB naming convention for object properties. For each layer field name, the first
letter and first letter after each underscore are capitalized and the underscores are
removed. This table shows sample name changes.

HERE HDLM Layer Fields MATLAB Layer Object Property
here_tile_id HereTileId
tile_center_here_2d_coordinate TileCenterHere2dCoordinate
nodes_in_tile NodesInTile

The layer objects are MATLAB structures whose properties correspond to structure fields.
To access data from these fields, use dot notation. For example, this code selects the
NodeId subfield from the NodeAttribution field of a layer:

layerData.NodeAttribution.NodeId

This table summarizes the valid types of layer objects and their top-level data fields. The
available layers are for the

Road Centerline Model and HD Lane Model. For an overview of HERE HDLM layers and
the models that they belong to, see “HERE HD Live Map Layers” on page 5-34. For a full
description of the fields, see HD Live Map Data Specification on the HERE Technologies
website.

 Read and Visualize Data Using HERE HD Live Map Reader

5-25

https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-intro.html

Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

AdasAttributes Precision geometry
measurements, such
as slope, elevation,
and curvature of
roads. Use this data
to develop advanced
driver assistance
systems (ADAS).

• HereTileId
• LinkAttributi

on
• NodeAttributi

on

Not available

ExternalReferenc
eAttributes

References to
external map links,
nodes, and
topologies for other
HERE maps.

• HereTileId
• LinkAttributi

on
• NodeAttributi

on

Not available

LaneAttributes Lane-level attributes,
such as direction of
travel and lane type.

• HereTileId
• LaneGroupAttr

ibution

Not available

5 Planning, Mapping, and Control

5-26

Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

LaneGeometryPoly
line

3-D lane geometry
composed of a set of
3-D points joined into
polylines.

• HereTileId
• TileCenterHer

e3dCoordinate
• LaneGroupGeom

etries

Available — Use the
plot function.

LaneRoadReferenc
es

Road and lane group
references and range
information. Use this
data to translate
positions between
the Road Centerline
Model and the HD
Lane Model.

• HereTileId
• LaneGroupLink

References
• LinkLaneGroup

References

Not available

 Read and Visualize Data Using HERE HD Live Map Reader

5-27

Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

LaneTopology Topologies of the HD
Lane model,
including lane group,
lane group
connector, lane, and
lane connector
topologies. This layer
also contains the
simplified 2-D
boundary geometry
of the lane model for
determining map tile
affinity and overflow.

• HereTileId
• TileCenterHer

e2dCoordinate
• LaneGroupsSta

rtingInTile
• LaneGroupConn

ectorsInTile
• IntersectingL

aneGroupRefs

Available — Use the
plot function.

RoutingAttribute
s

Road attributes
related to navigation
and conditions.
These attributes are
mapped
parametrically to the
2-D polyline
geometry in the
topology layer.

• HereTileId
• LinkAttributi

on
• NodeAttributi

on
• StrandAttribu

tion
• AttributionGr

oupList

Not available

5 Planning, Mapping, and Control

5-28

Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

RoutingLaneAttri
butes

Core navigation lane
attributes and
conditions, such as
the number of lanes
in a road. These
values are mapped
parametrically to 2-D
polylines along the
road links.

• HereTileId
• LinkAttributi

on

Not available

SpeedAttributes Speed-related road
attributes, such as
speed limits. These
attributes are
mapped to the 2-D
polyline geometry of
the topology layer.

• HereTileId
• LinkAttributi

on

Not available

 Read and Visualize Data Using HERE HD Live Map Reader

5-29

Layer Object Description Top-Level Data
Fields (Layer
Object Properties)

Plot Support

TopologyGeometry Topology and 2-D
line geometry of the
road. This layer also
contains definitions
of the nodes and
links in the map tile.

• HereTileId
• TileCenterHer

e2dCoordinate
• NodesInTile
• LinksStarting

InTile
• IntersectingL

inkRefs

Available — Use the
plot function.

Visualize Map Layer Data
You can visualize the data of certain map layers. To visualize these layers, use the plot
function. Plot the topology geometry of the returned map layers. The plot shows the
boundaries, nodes (intersections and dead-ends), and links (streets) within the map tiles.
If a link extends past the tile boundary, the layer data includes that link.

plot(topology)

5 Planning, Mapping, and Control

5-30

Map layer plots are returned on a geographic axes. To customize map displays, you can
use the properties of the geographic axes. For more details, see GeographicAxes
Properties. Overlay the driving route on the plot.

hold on
geoplot(lat,lon,'bo-','DisplayName','Route');
hold off

 Read and Visualize Data Using HERE HD Live Map Reader

5-31

See Also
hereHDLMReader | plot | read

More About
• “HERE HD Live Map Layers” on page 5-34
• “Use HERE HD Live Map Data to Verify Lane Configurations”

5 Planning, Mapping, and Control

5-32

External Websites
• HD Live Map Data Specification

 See Also

5-33

https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-intro.html

HERE HD Live Map Layers
HERE HD Live Map6 (HERE HDLM), developed by HERE Technologies, is a cloud-based
web service that enables you to access highly accurate, continuously updated map data.
The data is composed of tiled map layers containing information such as the topology and
geometry of roads and lanes, and road-level and lane-level attributes. The data is stored
in a series of map catalogs that correspond to geographic regions.

To access layer data for a selection of map tiles, use a hereHDLMReader object. For
information on the hereHDLMReader workflow, see “Access HERE HD Live Map Data” on
page 5-2.

The layers are grouped into these models:

• “Road Centerline Model” on page 5-35 — Provides road topology, shape geometry,
and other road-level attributes

• “HD Lane Model” on page 5-37 — Contains lane topology, highly accurate geometry,
and lane-level attributes

• “HD Localization Model” on page 5-39 — Includes multiple features, such as road
signs, to support localization strategies

hereHDLMReader objects support reading layers from the Road Centerline Model and
HD Lane Model only.

6. You need to enter into a separate agreement with HERE in order to gain access to the HDLM services and
to get the required credentials (app_id and app_code) for using the HERE Service.

5 Planning, Mapping, and Control

5-34

https://www.here.com

Road Centerline Model
The Road Centerline Model represents the topology of the road network. It is composed
of links corresponding to streets and nodes corresponding to intersections and dead-ends.
For each map tile, the layers within this model contain information about these links and
nodes, such as the 2-D line geometry of the road network, speed attributes, and routing
attributes.

 HERE HD Live Map Layers

5-35

The figure shows a plot for the TopologyGeometry layer, which visualizes the 2-D line
geometry of the nodes and links within a map tile.

This table shows the map layers of the Road Centerline Model that a hereHDLMReader
object can read. The available layers vary by geographic region, so not all layers are
available for every map tile. When you call the read function on a hereHDLMReader
object and specify a map layer name, the function returns the layer data as an object. For
more details about these layer objects, see the read function reference page.

Road Centerline Model Layers Description
TopologyGeometry Topology and 2-D line geometry of the road.

This layer also contains definitions of the
links (streets) and nodes (intersections and
dead-ends) in the map tile.

RoutingAttributes Road attributes related to navigation and
conditions. These attributes are mapped
parametrically to the 2-D polyline geometry
in the topology layer.

5 Planning, Mapping, and Control

5-36

Road Centerline Model Layers Description
RoutingLaneAttributes Core navigation lane attributes and

conditions, such as the number of lanes in a
road. These values are mapped
parametrically to 2-D polylines along the
road links.

SpeedAttributes Speed-related road attributes, such as
speed limits. These attributes are mapped
to the 2-D polyline geometry of the topology
layer.

AdasAttributes Precision geometry measurements such as
slope, elevation, and curvature of roads.
Use this data to develop advanced driver
assistance systems (ADAS).

ExternalReferenceAttributes References to external links, nodes, and
topologies for other HERE maps.

LaneRoadReferences (also part of HD
Lane Model)

Road and lane group references and range
information. Use this data to translate
positions between the Road Centerline
Model and the HD Lane Model.

HD Lane Model
The HD Lane Model represents the topology and geometry of lane groups, which are the
lanes within a link (street). In this model, the shapes of lanes are modeled with 2-D and 3-
D positions and support centimeter-level accuracy. This model provides several lane
attributes, including lane type, direction of travel, and lane boundary color and style.

The figure shows a plot for the LaneTopology layer object, which visualizes the 2-D line
geometry of lane groups and their connectors within a map tile.

 HERE HD Live Map Layers

5-37

This table shows the map layers of the HD Lane Model that a hereHDLMReader object
can read. The available layers vary by geographic region, so not all layers are available
for every map tile. When you call the read function on a hereHDLMReader object and
specify a map layer name, the function returns the layer data as an object. For more
details about these layer objects, see the read function reference page.

HD Lane Model Layers Description
LaneTopology Topologies of the HD Lane model, including

lane group, lane group connector, lane, and
lane connector topologies. This layer also
contains the simplified 2-D boundary
geometry of the lane model for determining
map tile affinity and overflow.

LaneGeometryPolyline 3-D lane geometry composed of a set of 3-D
points joined into polylines.

LaneAttributes Lane-level attributes, such as direction of
travel and lane type.

5 Planning, Mapping, and Control

5-38

HD Lane Model Layers Description
LaneRoadReferences (also part of Road
Centerline Model)

Road and lane group references and range
information. Used to translate positions
between the Road Centerline Model and the
HD Lane Model.

HD Localization Model
The HD Localization Model contains data, such as traffic signs or other road objects, that
helps autonomous vehicles accurately locate where they are within a road network.
hereHDLMReader objects do not support reading layers from this model.

See Also
hereHDLMReader | plot | read

More About
• “Access HERE HD Live Map Data” on page 5-2
• “Use HERE HD Live Map Data to Verify Lane Configurations”

External Websites
• HD Live Map Data Specification

 See Also

5-39

https://developer.here.com/olp/documentation/hd-live-map/topics/hdlm2-chapter-intro.html

Control Vehicle Velocity
This model uses a Longitudinal Controller Stanley block to control the velocity of a
vehicle in forward motion. In this model, the vehicle accelerates from 0 to 10 meters per
second.

The Longitudinal Controller Stanley block is a discrete proportional-integral controller
with integral anti-windup. Given the current velocity and driving direction of a vehicle,
the block outputs the acceleration and deceleration commands needed to match the
specified reference velocity.

Run the model. Then, open the scope to see the change in velocity and the corresponding
acceleration and deceleration commands.

5 Planning, Mapping, and Control

5-40

The Longitudinal Controller Stanley block saturates the acceleration command at a
maximum value of 3 meters per second. The Maximum longitudinal acceleration (m/
s^2) parameter of the block determines this maximum value. Try tuning this parameter
and resimulating the model. Observe the effects of the change on the scope. Other
parameters that you can tune include the gain coefficients of the proportional and

 Control Vehicle Velocity

5-41

integral components of the block, using the Proportional gain, Kp and Integral gain,
Ki parameters, respectively.

See Also
Lateral Controller Stanley | Longitudinal Controller Stanley

More About
• “Automated Parking Valet in Simulink”

5 Planning, Mapping, and Control

5-42

